Reviewed-by: Neil Horman <nhorman@openssl.org> Reviewed-by: Matt Caswell <matt@openssl.org> Release: yes
863 lines
25 KiB
Perl
863 lines
25 KiB
Perl
# Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
|
|
# Copyright (c) 2024, Intel Corporation. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
# this file except in compliance with the License. You can obtain a copy
|
|
# in the file LICENSE in the source distribution or at
|
|
# https://www.openssl.org/source/license.html
|
|
#
|
|
# Written by Zhiguo Zhou <zhiguo.zhou@intel.com> and Wangyang Guo <wangyang.guo@intel.com>.
|
|
# Special thanks to Tomasz Kantecki <tomasz.kantecki@intel.com> for his valuable suggestions.
|
|
#
|
|
# October 2024
|
|
#
|
|
# Initial release.
|
|
#
|
|
|
|
# $output is the last argument if it looks like a file (it has an extension)
|
|
# $flavour is the first argument if it doesn't look like a file
|
|
$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
|
|
$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
|
|
|
|
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
|
$avxifma=0;
|
|
|
|
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
|
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
|
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
|
die "can't locate x86_64-xlate.pl";
|
|
|
|
# TODO: Find out the version of NASM that supports VEX-encoded AVX-IFMA instructions
|
|
if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
|
|
=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
|
|
$avxifma = ($1>=2.40);
|
|
}
|
|
|
|
if (!$avxifma && `$ENV{CC} -v 2>&1`
|
|
=~ /\s*((?:clang|LLVM) version|.*based on LLVM) ([0-9]+)\.([0-9]+)\.([0-9]+)?/) {
|
|
my $ver = $2 + $3/100.0 + $4/10000.0; # 3.1.0->3.01, 3.10.1->3.1001
|
|
$avxifma = ($ver>=16.0);
|
|
}
|
|
|
|
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""
|
|
or die "can't call $xlate: $!";
|
|
*STDOUT=*OUT;
|
|
|
|
if ($avxifma>0) {{{
|
|
@_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
|
|
|
|
$code.=<<___;
|
|
.text
|
|
.extern OPENSSL_ia32cap_P
|
|
.globl ossl_rsaz_avxifma_eligible
|
|
.type ossl_rsaz_avxifma_eligible,\@abi-omnipotent
|
|
.align 32
|
|
ossl_rsaz_avxifma_eligible:
|
|
mov OPENSSL_ia32cap_P+20(%rip), %ecx
|
|
xor %eax,%eax
|
|
and \$`1<<23`, %ecx # avxifma
|
|
cmp \$`1<<23`, %ecx
|
|
cmove %ecx,%eax
|
|
ret
|
|
.size ossl_rsaz_avxifma_eligible, .-ossl_rsaz_avxifma_eligible
|
|
___
|
|
|
|
###############################################################################
|
|
# Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52.
|
|
#
|
|
# AMM is defined as presented in the paper [1].
|
|
#
|
|
# The input and output are presented in 2^52 radix domain, i.e.
|
|
# |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed.
|
|
# |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64
|
|
#
|
|
# NB: the AMM implementation does not perform "conditional" subtraction step
|
|
# specified in the original algorithm as according to the Lemma 1 from the paper
|
|
# [2], the result will be always < 2*m and can be used as a direct input to
|
|
# the next AMM iteration. This post-condition is true, provided the correct
|
|
# parameter |s| (notion of the Lemma 1 from [2]) is chosen, i.e. s >= n + 2 * k,
|
|
# which matches our case: 1040 > 1024 + 2 * 1.
|
|
#
|
|
# [1] Gueron, S. Efficient software implementations of modular exponentiation.
|
|
# DOI: 10.1007/s13389-012-0031-5
|
|
# [2] Gueron, S. Enhanced Montgomery Multiplication.
|
|
# DOI: 10.1007/3-540-36400-5_5
|
|
#
|
|
# void ossl_rsaz_amm52x20_x1_avxifma256(BN_ULONG *res,
|
|
# const BN_ULONG *a,
|
|
# const BN_ULONG *b,
|
|
# const BN_ULONG *m,
|
|
# BN_ULONG k0);
|
|
###############################################################################
|
|
{
|
|
# input parameters ("%rdi","%rsi","%rdx","%rcx","%r8")
|
|
my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI;
|
|
|
|
my $mask52 = "%rax";
|
|
my $acc0_0 = "%r9";
|
|
my $acc0_0_low = "%r9d";
|
|
my $acc0_1 = "%r15";
|
|
my $acc0_1_low = "%r15d";
|
|
my $b_ptr = "%r11";
|
|
|
|
my $iter = "%ebx";
|
|
|
|
my $zero = "%ymm0";
|
|
my $Bi = "%ymm1";
|
|
my $Yi = "%ymm2";
|
|
my $Yi_xmm = "%xmm2";
|
|
my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm3",map("%ymm$_",(5..8)));
|
|
my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm4",map("%ymm$_",(9..12)));
|
|
|
|
# Registers mapping for normalization.
|
|
my ($T0,$T0h,$T1,$T1h,$T2,$tmp) = ("$zero", "$Bi", "$Yi", map("%ymm$_", (13..15)));
|
|
my $T0_xmm = "%xmm0";
|
|
|
|
sub amm52x20_x1() {
|
|
# _data_offset - offset in the |a| or |m| arrays pointing to the beginning
|
|
# of data for corresponding AMM operation;
|
|
# _b_offset - offset in the |b| array pointing to the next qword digit;
|
|
my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_;
|
|
$code.=<<___;
|
|
movq $_b_offset($b_ptr), %r13 # b[i]
|
|
|
|
vpbroadcastq $_b_offset($b_ptr), $Bi # broadcast b[i]
|
|
movq $_data_offset($a), %rdx
|
|
mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2)
|
|
addq %r13, $_acc # acc += t0
|
|
movq %r12, %r10
|
|
adcq \$0, %r10 # t2 += CF
|
|
|
|
movq $_k0, %r13
|
|
imulq $_acc, %r13 # acc * k0
|
|
andq $mask52, %r13 # yi = (acc * k0) & mask52
|
|
|
|
vmovq %r13, $Yi_xmm
|
|
vpbroadcastq $Yi_xmm, $Yi # broadcast y[i]
|
|
movq $_data_offset($m), %rdx
|
|
mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1)
|
|
addq %r13, $_acc # acc += t0
|
|
adcq %r12, %r10 # t2 += (t1 + CF)
|
|
|
|
shrq \$52, $_acc
|
|
salq \$12, %r10
|
|
or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12))
|
|
|
|
lea -168(%rsp), %rsp
|
|
{vex} vpmadd52luq `$_data_offset`($a), $Bi, $_R0
|
|
{vex} vpmadd52luq `$_data_offset+32`($a), $Bi, $_R0h
|
|
{vex} vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1
|
|
{vex} vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
|
{vex} vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2
|
|
|
|
{vex} vpmadd52luq `$_data_offset`($m), $Yi, $_R0
|
|
{vex} vpmadd52luq `$_data_offset+32`($m), $Yi, $_R0h
|
|
{vex} vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1
|
|
{vex} vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
|
{vex} vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2
|
|
|
|
# Shift accumulators right by 1 qword, zero extending the highest one
|
|
vmovdqu $_R0, `32*0`(%rsp)
|
|
vmovdqu $_R0h, `32*1`(%rsp)
|
|
vmovdqu $_R1, `32*2`(%rsp)
|
|
vmovdqu $_R1h, `32*3`(%rsp)
|
|
vmovdqu $_R2, `32*4`(%rsp)
|
|
movq \$0, `32*5`(%rsp)
|
|
|
|
vmovdqu `32*0 + 8`(%rsp), $_R0
|
|
vmovdqu `32*1 + 8`(%rsp), $_R0h
|
|
vmovdqu `32*2 + 8`(%rsp), $_R1
|
|
vmovdqu `32*3 + 8`(%rsp), $_R1h
|
|
vmovdqu `32*4 + 8`(%rsp), $_R2
|
|
|
|
addq 8(%rsp), $_acc # acc += R0[0]
|
|
|
|
{vex} vpmadd52huq `$_data_offset`($a), $Bi, $_R0
|
|
{vex} vpmadd52huq `$_data_offset+32`($a), $Bi, $_R0h
|
|
{vex} vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1
|
|
{vex} vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h
|
|
{vex} vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2
|
|
|
|
{vex} vpmadd52huq `$_data_offset`($m), $Yi, $_R0
|
|
{vex} vpmadd52huq `$_data_offset+32`($m), $Yi, $_R0h
|
|
{vex} vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1
|
|
{vex} vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h
|
|
{vex} vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2
|
|
lea 168(%rsp),%rsp
|
|
___
|
|
}
|
|
|
|
# Normalization routine: handles carry bits and gets bignum qwords to normalized
|
|
# 2^52 representation.
|
|
#
|
|
# Uses %r8-14,%e[bcd]x
|
|
sub amm52x20_x1_norm {
|
|
my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_;
|
|
$code.=<<___;
|
|
# Put accumulator to low qword in R0
|
|
vmovq $_acc, $T0_xmm
|
|
vpbroadcastq $T0_xmm, $T0
|
|
vpblendd \$3, $T0, $_R0, $_R0
|
|
|
|
# Extract "carries" (12 high bits) from each QW of R0..R2
|
|
# Save them to LSB of QWs in T0..T2
|
|
vpsrlq \$52, $_R0, $T0
|
|
vpsrlq \$52, $_R0h, $T0h
|
|
vpsrlq \$52, $_R1, $T1
|
|
vpsrlq \$52, $_R1h, $T1h
|
|
vpsrlq \$52, $_R2, $T2
|
|
|
|
# "Shift left" T0..T2 by 1 QW
|
|
vpermq \$144, $T2, $T2
|
|
vpermq \$3, $T1h, $tmp
|
|
vblendpd \$1, $tmp, $T2, $T2
|
|
|
|
vpermq \$144, $T1h, $T1h
|
|
vpermq \$3, $T1, $tmp
|
|
vblendpd \$1, $tmp, $T1h, $T1h
|
|
|
|
vpermq \$144, $T1, $T1
|
|
vpermq \$3, $T0h, $tmp
|
|
vblendpd \$1, $tmp, $T1, $T1
|
|
|
|
vpermq \$144, $T0h, $T0h
|
|
vpermq \$3, $T0, $tmp
|
|
vblendpd \$1, $tmp, $T0h, $T0h
|
|
|
|
vpermq \$144, $T0, $T0
|
|
vpand .Lhigh64x3(%rip), $T0, $T0
|
|
|
|
# Drop "carries" from R0..R2 QWs
|
|
vpand .Lmask52x4(%rip), $_R0, $_R0
|
|
vpand .Lmask52x4(%rip), $_R0h, $_R0h
|
|
vpand .Lmask52x4(%rip), $_R1, $_R1
|
|
vpand .Lmask52x4(%rip), $_R1h, $_R1h
|
|
vpand .Lmask52x4(%rip), $_R2, $_R2
|
|
|
|
# Sum R0..R2 with corresponding adjusted carries
|
|
vpaddq $T0, $_R0, $_R0
|
|
vpaddq $T0h, $_R0h, $_R0h
|
|
vpaddq $T1, $_R1, $_R1
|
|
vpaddq $T1h, $_R1h, $_R1h
|
|
vpaddq $T2, $_R2, $_R2
|
|
|
|
# Now handle carry bits from this addition
|
|
# Get mask of QWs which 52-bit parts overflow...
|
|
vpcmpgtq .Lmask52x4(%rip), $_R0, $T0
|
|
vpcmpgtq .Lmask52x4(%rip), $_R0h, $T0h
|
|
vpcmpgtq .Lmask52x4(%rip), $_R1, $T1
|
|
vpcmpgtq .Lmask52x4(%rip), $_R1h, $T1h
|
|
vpcmpgtq .Lmask52x4(%rip), $_R2, $T2
|
|
vmovmskpd $T0, %r14d
|
|
vmovmskpd $T0h, %r13d
|
|
vmovmskpd $T1, %r12d
|
|
vmovmskpd $T1h, %r11d
|
|
vmovmskpd $T2, %r10d
|
|
|
|
# ...or saturated
|
|
vpcmpeqq .Lmask52x4(%rip), $_R0, $T0
|
|
vpcmpeqq .Lmask52x4(%rip), $_R0h, $T0h
|
|
vpcmpeqq .Lmask52x4(%rip), $_R1, $T1
|
|
vpcmpeqq .Lmask52x4(%rip), $_R1h, $T1h
|
|
vpcmpeqq .Lmask52x4(%rip), $_R2, $T2
|
|
vmovmskpd $T0, %r9d
|
|
vmovmskpd $T0h, %r8d
|
|
vmovmskpd $T1, %ebx
|
|
vmovmskpd $T1h, %ecx
|
|
vmovmskpd $T2, %edx
|
|
|
|
# Get mask of QWs where carries shall be propagated to.
|
|
# Merge 4-bit masks to 8-bit values to use add with carry.
|
|
shl \$4, %r13b
|
|
or %r13b, %r14b
|
|
shl \$4, %r11b
|
|
or %r11b, %r12b
|
|
|
|
add %r14b, %r14b
|
|
adc %r12b, %r12b
|
|
adc %r10b, %r10b
|
|
|
|
shl \$4, %r8b
|
|
or %r8b,%r9b
|
|
shl \$4, %cl
|
|
or %cl, %bl
|
|
|
|
add %r9b, %r14b
|
|
adc %bl, %r12b
|
|
adc %dl, %r10b
|
|
|
|
xor %r9b, %r14b
|
|
xor %bl, %r12b
|
|
xor %dl, %r10b
|
|
|
|
lea .Lkmasklut(%rip), %rdx
|
|
|
|
mov %r14b, %r13b
|
|
and \$0xf, %r14
|
|
vpsubq .Lmask52x4(%rip), $_R0, $T0
|
|
shl \$5, %r14
|
|
vmovapd (%rdx, %r14), $T1
|
|
vblendvpd $T1, $T0, $_R0, $_R0
|
|
|
|
shr \$4, %r13b
|
|
and \$0xf, %r13
|
|
vpsubq .Lmask52x4(%rip), $_R0h, $T0
|
|
shl \$5, %r13
|
|
vmovapd (%rdx, %r13), $T1
|
|
vblendvpd $T1, $T0, $_R0h, $_R0h
|
|
|
|
mov %r12b, %r11b
|
|
and \$0xf, %r12
|
|
vpsubq .Lmask52x4(%rip), $_R1, $T0
|
|
shl \$5, %r12
|
|
vmovapd (%rdx, %r12), $T1
|
|
vblendvpd $T1, $T0, $_R1, $_R1
|
|
|
|
shr \$4, %r11b
|
|
and \$0xf, %r11
|
|
vpsubq .Lmask52x4(%rip), $_R1h, $T0
|
|
shl \$5, %r11
|
|
vmovapd (%rdx, %r11), $T1
|
|
vblendvpd $T1, $T0, $_R1h, $_R1h
|
|
|
|
and \$0xf, %r10
|
|
vpsubq .Lmask52x4(%rip), $_R2, $T0
|
|
shl \$5, %r10
|
|
vmovapd (%rdx, %r10), $T1
|
|
vblendvpd $T1, $T0, $_R2, $_R2
|
|
|
|
# Add carries according to the obtained mask
|
|
vpand .Lmask52x4(%rip), $_R0, $_R0
|
|
vpand .Lmask52x4(%rip), $_R0h, $_R0h
|
|
vpand .Lmask52x4(%rip), $_R1, $_R1
|
|
vpand .Lmask52x4(%rip), $_R1h, $_R1h
|
|
vpand .Lmask52x4(%rip), $_R2, $_R2
|
|
___
|
|
}
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.globl ossl_rsaz_amm52x20_x1_avxifma256
|
|
.type ossl_rsaz_amm52x20_x1_avxifma256,\@function,5
|
|
.align 32
|
|
ossl_rsaz_amm52x20_x1_avxifma256:
|
|
.cfi_startproc
|
|
endbranch
|
|
push %rbx
|
|
.cfi_push %rbx
|
|
push %rbp
|
|
.cfi_push %rbp
|
|
push %r12
|
|
.cfi_push %r12
|
|
push %r13
|
|
.cfi_push %r13
|
|
push %r14
|
|
.cfi_push %r14
|
|
push %r15
|
|
.cfi_push %r15
|
|
.Lossl_rsaz_amm52x20_x1_avxifma256_body:
|
|
|
|
# Zeroing accumulators
|
|
vpxor $zero, $zero, $zero
|
|
vmovapd $zero, $R0_0
|
|
vmovapd $zero, $R0_0h
|
|
vmovapd $zero, $R1_0
|
|
vmovapd $zero, $R1_0h
|
|
vmovapd $zero, $R2_0
|
|
|
|
xorl $acc0_0_low, $acc0_0_low
|
|
|
|
movq $b, $b_ptr # backup address of b
|
|
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
|
|
|
# Loop over 20 digits unrolled by 4
|
|
mov \$5, $iter
|
|
|
|
.align 32
|
|
.Lloop5:
|
|
___
|
|
foreach my $idx (0..3) {
|
|
&amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0);
|
|
}
|
|
$code.=<<___;
|
|
lea `4*8`($b_ptr), $b_ptr
|
|
dec $iter
|
|
jne .Lloop5
|
|
___
|
|
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
|
$code.=<<___;
|
|
|
|
vmovdqu $R0_0, `0*32`($res)
|
|
vmovdqu $R0_0h, `1*32`($res)
|
|
vmovdqu $R1_0, `2*32`($res)
|
|
vmovdqu $R1_0h, `3*32`($res)
|
|
vmovdqu $R2_0, `4*32`($res)
|
|
|
|
vzeroupper
|
|
mov 0(%rsp),%r15
|
|
.cfi_restore %r15
|
|
mov 8(%rsp),%r14
|
|
.cfi_restore %r14
|
|
mov 16(%rsp),%r13
|
|
.cfi_restore %r13
|
|
mov 24(%rsp),%r12
|
|
.cfi_restore %r12
|
|
mov 32(%rsp),%rbp
|
|
.cfi_restore %rbp
|
|
mov 40(%rsp),%rbx
|
|
.cfi_restore %rbx
|
|
lea 48(%rsp),%rsp
|
|
.cfi_adjust_cfa_offset -48
|
|
.Lossl_rsaz_amm52x20_x1_avxifma256_epilogue:
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_rsaz_amm52x20_x1_avxifma256, .-ossl_rsaz_amm52x20_x1_avxifma256
|
|
___
|
|
|
|
$code.=<<___;
|
|
.section .rodata align=32
|
|
.align 32
|
|
.Lmask52x4:
|
|
.quad 0xfffffffffffff
|
|
.quad 0xfffffffffffff
|
|
.quad 0xfffffffffffff
|
|
.quad 0xfffffffffffff
|
|
.Lhigh64x3:
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.Lkmasklut:
|
|
#0000
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0x0
|
|
#0001
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0x0
|
|
#0010
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0x0
|
|
#0011
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0x0
|
|
#0100
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
#0101
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
#0110
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
#0111
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
#1000
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
#1001
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
#1010
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
#1011
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
#1100
|
|
.quad 0x0
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
#1101
|
|
.quad 0xffffffffffffffff
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
#1110
|
|
.quad 0x0
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
#1111
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
.quad 0xffffffffffffffff
|
|
___
|
|
|
|
###############################################################################
|
|
# Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52
|
|
#
|
|
# See description of ossl_rsaz_amm52x20_x1_ifma256() above for details about Almost
|
|
# Montgomery Multiplication algorithm and function input parameters description.
|
|
#
|
|
# This function does two AMMs for two independent inputs, hence dual.
|
|
#
|
|
# void ossl_rsaz_amm52x20_x2_avxifma256(BN_ULONG out[2][20],
|
|
# const BN_ULONG a[2][20],
|
|
# const BN_ULONG b[2][20],
|
|
# const BN_ULONG m[2][20],
|
|
# const BN_ULONG k0[2]);
|
|
###############################################################################
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.globl ossl_rsaz_amm52x20_x2_avxifma256
|
|
.type ossl_rsaz_amm52x20_x2_avxifma256,\@function,5
|
|
.align 32
|
|
ossl_rsaz_amm52x20_x2_avxifma256:
|
|
.cfi_startproc
|
|
endbranch
|
|
push %rbx
|
|
.cfi_push %rbx
|
|
push %rbp
|
|
.cfi_push %rbp
|
|
push %r12
|
|
.cfi_push %r12
|
|
push %r13
|
|
.cfi_push %r13
|
|
push %r14
|
|
.cfi_push %r14
|
|
push %r15
|
|
.cfi_push %r15
|
|
.Lossl_rsaz_amm52x20_x2_avxifma256_body:
|
|
|
|
# Zeroing accumulators
|
|
vpxor $zero, $zero, $zero
|
|
vmovapd $zero, $R0_0
|
|
vmovapd $zero, $R0_0h
|
|
vmovapd $zero, $R1_0
|
|
vmovapd $zero, $R1_0h
|
|
vmovapd $zero, $R2_0
|
|
vmovapd $zero, $R0_1
|
|
vmovapd $zero, $R0_1h
|
|
vmovapd $zero, $R1_1
|
|
vmovapd $zero, $R1_1h
|
|
vmovapd $zero, $R2_1
|
|
|
|
xorl $acc0_0_low, $acc0_0_low
|
|
xorl $acc0_1_low, $acc0_1_low
|
|
|
|
movq $b, $b_ptr # backup address of b
|
|
movq \$0xfffffffffffff, $mask52 # 52-bit mask
|
|
|
|
mov \$20, $iter
|
|
|
|
.align 32
|
|
.Lloop20:
|
|
___
|
|
&amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)");
|
|
# 20*8 = offset of the next dimension in two-dimension array
|
|
&amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)");
|
|
$code.=<<___;
|
|
lea 8($b_ptr), $b_ptr
|
|
dec $iter
|
|
jne .Lloop20
|
|
___
|
|
&amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0);
|
|
&amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1);
|
|
$code.=<<___;
|
|
|
|
vmovdqu $R0_0, `0*32`($res)
|
|
vmovdqu $R0_0h, `1*32`($res)
|
|
vmovdqu $R1_0, `2*32`($res)
|
|
vmovdqu $R1_0h, `3*32`($res)
|
|
vmovdqu $R2_0, `4*32`($res)
|
|
|
|
vmovdqu $R0_1, `5*32`($res)
|
|
vmovdqu $R0_1h, `6*32`($res)
|
|
vmovdqu $R1_1, `7*32`($res)
|
|
vmovdqu $R1_1h, `8*32`($res)
|
|
vmovdqu $R2_1, `9*32`($res)
|
|
|
|
vzeroupper
|
|
mov 0(%rsp),%r15
|
|
.cfi_restore %r15
|
|
mov 8(%rsp),%r14
|
|
.cfi_restore %r14
|
|
mov 16(%rsp),%r13
|
|
.cfi_restore %r13
|
|
mov 24(%rsp),%r12
|
|
.cfi_restore %r12
|
|
mov 32(%rsp),%rbp
|
|
.cfi_restore %rbp
|
|
mov 40(%rsp),%rbx
|
|
.cfi_restore %rbx
|
|
lea 48(%rsp),%rsp
|
|
.cfi_adjust_cfa_offset -48
|
|
.Lossl_rsaz_amm52x20_x2_avxifma256_epilogue:
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_rsaz_amm52x20_x2_avxifma256, .-ossl_rsaz_amm52x20_x2_avxifma256
|
|
___
|
|
}
|
|
|
|
###############################################################################
|
|
# Constant time extraction from the precomputed table of powers base^i, where
|
|
# i = 0..2^EXP_WIN_SIZE-1
|
|
#
|
|
# The input |red_table| contains precomputations for two independent base values.
|
|
# |red_table_idx1| and |red_table_idx2| are corresponding power indexes.
|
|
#
|
|
# Extracted value (output) is 2 20 digit numbers in 2^52 radix.
|
|
#
|
|
# void ossl_extract_multiplier_2x20_win5_avx(BN_ULONG *red_Y,
|
|
# const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20],
|
|
# int red_table_idx1, int red_table_idx2);
|
|
#
|
|
# EXP_WIN_SIZE = 5
|
|
###############################################################################
|
|
{
|
|
# input parameters
|
|
my ($out,$red_tbl,$red_tbl_idx1,$red_tbl_idx2)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
|
|
("%rdi","%rsi","%rdx","%rcx"); # Unix order
|
|
|
|
my ($t0,$t1,$t2,$t3,$t4,$t5) = map("%ymm$_", (0..5));
|
|
my ($t6,$t7,$t8,$t9) = map("%ymm$_", (6..9));
|
|
my ($tmp,$cur_idx,$idx1,$idx2,$ones,$mask) = map("%ymm$_", (10..15));
|
|
|
|
my @t = ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7,$t8,$t9);
|
|
my $t0xmm = $t0;
|
|
my $tmp_xmm = "%xmm10";
|
|
$t0xmm =~ s/%y/%x/;
|
|
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.align 32
|
|
.globl ossl_extract_multiplier_2x20_win5_avx
|
|
.type ossl_extract_multiplier_2x20_win5_avx,\@abi-omnipotent
|
|
ossl_extract_multiplier_2x20_win5_avx:
|
|
.cfi_startproc
|
|
endbranch
|
|
vmovapd .Lones(%rip), $ones # broadcast ones
|
|
vmovq $red_tbl_idx1, $tmp_xmm
|
|
vpbroadcastq $tmp_xmm, $idx1
|
|
vmovq $red_tbl_idx2, $tmp_xmm
|
|
vpbroadcastq $tmp_xmm, $idx2
|
|
leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl
|
|
|
|
# zeroing t0..n, cur_idx
|
|
vpxor $t0xmm, $t0xmm, $t0xmm
|
|
vmovapd $t0, $cur_idx
|
|
___
|
|
foreach (1..9) {
|
|
$code.="vmovapd $t0, $t[$_] \n";
|
|
}
|
|
$code.=<<___;
|
|
|
|
.align 32
|
|
.Lloop:
|
|
vpcmpeqq $cur_idx, $idx1, $mask # mask of (idx1 == cur_idx)
|
|
___
|
|
foreach (0..4) {
|
|
$code.=<<___;
|
|
vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
|
|
vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
vpcmpeqq $cur_idx, $idx2, $mask # mask of (idx2 == cur_idx)
|
|
___
|
|
foreach (5..9) {
|
|
$code.=<<___;
|
|
vmovdqu `${_}*32`($red_tbl), $tmp # load data from red_tbl
|
|
vblendvpd $mask, $tmp, $t[$_], ${t[$_]} # extract data when mask is not zero
|
|
___
|
|
}
|
|
$code.=<<___;
|
|
vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx
|
|
addq \$`2*20*8`, $red_tbl
|
|
cmpq $red_tbl, %rax
|
|
jne .Lloop
|
|
___
|
|
# store t0..n
|
|
foreach (0..9) {
|
|
$code.="vmovdqu $t[$_], `${_}*32`($out) \n";
|
|
}
|
|
$code.=<<___;
|
|
ret
|
|
.cfi_endproc
|
|
.size ossl_extract_multiplier_2x20_win5_avx, .-ossl_extract_multiplier_2x20_win5_avx
|
|
___
|
|
$code.=<<___;
|
|
.section .rodata align=32
|
|
.align 32
|
|
.Lones:
|
|
.quad 1,1,1,1
|
|
.Lzeros:
|
|
.quad 0,0,0,0
|
|
___
|
|
}
|
|
|
|
if ($win64) {
|
|
$rec="%rcx";
|
|
$frame="%rdx";
|
|
$context="%r8";
|
|
$disp="%r9";
|
|
|
|
$code.=<<___;
|
|
.extern __imp_RtlVirtualUnwind
|
|
.type rsaz_def_handler,\@abi-omnipotent
|
|
.align 16
|
|
rsaz_def_handler:
|
|
push %rsi
|
|
push %rdi
|
|
push %rbx
|
|
push %rbp
|
|
push %r12
|
|
push %r13
|
|
push %r14
|
|
push %r15
|
|
pushfq
|
|
sub \$64,%rsp
|
|
|
|
mov 120($context),%rax # pull context->Rax
|
|
mov 248($context),%rbx # pull context->Rip
|
|
|
|
mov 8($disp),%rsi # disp->ImageBase
|
|
mov 56($disp),%r11 # disp->HandlerData
|
|
|
|
mov 0(%r11),%r10d # HandlerData[0]
|
|
lea (%rsi,%r10),%r10 # prologue label
|
|
cmp %r10,%rbx # context->Rip<.Lprologue
|
|
jb .Lcommon_seh_tail
|
|
|
|
mov 152($context),%rax # pull context->Rsp
|
|
|
|
mov 4(%r11),%r10d # HandlerData[1]
|
|
lea (%rsi,%r10),%r10 # epilogue label
|
|
cmp %r10,%rbx # context->Rip>=.Lepilogue
|
|
jae .Lcommon_seh_tail
|
|
|
|
lea 48(%rax),%rax
|
|
|
|
mov -8(%rax),%rbx
|
|
mov -16(%rax),%rbp
|
|
mov -24(%rax),%r12
|
|
mov -32(%rax),%r13
|
|
mov -40(%rax),%r14
|
|
mov -48(%rax),%r15
|
|
mov %rbx,144($context) # restore context->Rbx
|
|
mov %rbp,160($context) # restore context->Rbp
|
|
mov %r12,216($context) # restore context->R12
|
|
mov %r13,224($context) # restore context->R13
|
|
mov %r14,232($context) # restore context->R14
|
|
mov %r15,240($context) # restore context->R14
|
|
|
|
.Lcommon_seh_tail:
|
|
mov 8(%rax),%rdi
|
|
mov 16(%rax),%rsi
|
|
mov %rax,152($context) # restore context->Rsp
|
|
mov %rsi,168($context) # restore context->Rsi
|
|
mov %rdi,176($context) # restore context->Rdi
|
|
|
|
mov 40($disp),%rdi # disp->ContextRecord
|
|
mov $context,%rsi # context
|
|
mov \$154,%ecx # sizeof(CONTEXT)
|
|
.long 0xa548f3fc # cld; rep movsq
|
|
|
|
mov $disp,%rsi
|
|
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
|
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
|
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
|
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
|
mov 40(%rsi),%r10 # disp->ContextRecord
|
|
lea 56(%rsi),%r11 # &disp->HandlerData
|
|
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
|
mov %r10,32(%rsp) # arg5
|
|
mov %r11,40(%rsp) # arg6
|
|
mov %r12,48(%rsp) # arg7
|
|
mov %rcx,56(%rsp) # arg8, (NULL)
|
|
call *__imp_RtlVirtualUnwind(%rip)
|
|
|
|
mov \$1,%eax # ExceptionContinueSearch
|
|
add \$64,%rsp
|
|
popfq
|
|
pop %r15
|
|
pop %r14
|
|
pop %r13
|
|
pop %r12
|
|
pop %rbp
|
|
pop %rbx
|
|
pop %rdi
|
|
pop %rsi
|
|
ret
|
|
.size rsaz_def_handler,.-rsaz_def_handler
|
|
|
|
.section .pdata
|
|
.align 4
|
|
.rva .LSEH_begin_ossl_rsaz_amm52x20_x1_avxifma256
|
|
.rva .LSEH_end_ossl_rsaz_amm52x20_x1_avxifma256
|
|
.rva .LSEH_info_ossl_rsaz_amm52x20_x1_avxifma256
|
|
|
|
.rva .LSEH_begin_ossl_rsaz_amm52x20_x2_avxifma256
|
|
.rva .LSEH_end_ossl_rsaz_amm52x20_x2_avxifma256
|
|
.rva .LSEH_info_ossl_rsaz_amm52x20_x2_avxifma256
|
|
|
|
.section .xdata
|
|
.align 8
|
|
.LSEH_info_ossl_rsaz_amm52x20_x1_avxifma256:
|
|
.byte 9,0,0,0
|
|
.rva rsaz_def_handler
|
|
.rva .Lossl_rsaz_amm52x20_x1_avxifma256_body,.Lossl_rsaz_amm52x20_x1_avxifma256_epilogue
|
|
.LSEH_info_ossl_rsaz_amm52x20_x2_avxifma256:
|
|
.byte 9,0,0,0
|
|
.rva rsaz_def_handler
|
|
.rva .Lossl_rsaz_amm52x20_x2_avxifma256_body,.Lossl_rsaz_amm52x20_x2_avxifma256_epilogue
|
|
___
|
|
}
|
|
}}} else {{{ # fallback for old assembler
|
|
$code.=<<___;
|
|
.text
|
|
|
|
.globl ossl_rsaz_avxifma_eligible
|
|
.type ossl_rsaz_avxifma_eligible,\@abi-omnipotent
|
|
ossl_rsaz_avxifma_eligible:
|
|
xor %eax,%eax
|
|
ret
|
|
.size ossl_rsaz_avxifma_eligible, .-ossl_rsaz_avxifma_eligible
|
|
|
|
.globl ossl_rsaz_amm52x20_x1_avxifma256
|
|
.globl ossl_rsaz_amm52x20_x2_avxifma256
|
|
.globl ossl_extract_multiplier_2x20_win5_avx
|
|
.type ossl_rsaz_amm52x20_x1_avxifma256,\@abi-omnipotent
|
|
ossl_rsaz_amm52x20_x1_avxifma256:
|
|
ossl_rsaz_amm52x20_x2_avxifma256:
|
|
ossl_extract_multiplier_2x20_win5_avx:
|
|
.byte 0x0f,0x0b # ud2
|
|
ret
|
|
.size ossl_rsaz_amm52x20_x1_avxifma256, .-ossl_rsaz_amm52x20_x1_avxifma256
|
|
___
|
|
}}}
|
|
|
|
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
|
print $code;
|
|
close STDOUT or die "error closing STDOUT: $!";
|