openssl/test/ml_kem_evp_extra_test.c
openssl-machine 0c679f5566 Copyright year updates
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Release: yes
2025-03-12 13:35:59 +00:00

435 lines
14 KiB
C

/*
* Copyright 2015-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/conf.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/provider.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/param_build.h>
#include <openssl/rand.h>
#include <crypto/ml_kem.h>
#include "testutil.h"
static OSSL_LIB_CTX *testctx = NULL;
typedef enum OPTION_choice {
OPT_ERR = -1,
OPT_EOF = 0,
OPT_CONFIG_FILE,
OPT_TEST_RAND,
OPT_TEST_ENUM
} OPTION_CHOICE;
const OPTIONS *test_get_options(void)
{
static const OPTIONS options[] = {
OPT_TEST_OPTIONS_DEFAULT_USAGE,
{ "test-rand", OPT_TEST_RAND, '-', "Test non-derandomised ML-KEM" },
{ NULL }
};
return options;
}
static uint8_t gen_seed[64] = {
0x7c, 0x99, 0x35, 0xa0, 0xb0, 0x76, 0x94, 0xaa, 0x0c, 0x6d, 0x10, 0xe4,
0xdb, 0x6b, 0x1a, 0xdd, 0x2f, 0xd8, 0x1a, 0x25, 0xcc, 0xb1, 0x48, 0x03,
0x2d, 0xcd, 0x73, 0x99, 0x36, 0x73, 0x7f, 0x2d, 0x86, 0x26, 0xed, 0x79,
0xd4, 0x51, 0x14, 0x08, 0x00, 0xe0, 0x3b, 0x59, 0xb9, 0x56, 0xf8, 0x21,
0x0e, 0x55, 0x60, 0x67, 0x40, 0x7d, 0x13, 0xdc, 0x90, 0xfa, 0x9e, 0x8b,
0x87, 0x2b, 0xfb, 0x8f
};
static uint8_t enc_seed[32] = {
0x14, 0x7c, 0x03, 0xf7, 0xa5, 0xbe, 0xbb, 0xa4, 0x06, 0xc8, 0xfa, 0xe1,
0x87, 0x4d, 0x7f, 0x13, 0xc8, 0x0e, 0xfe, 0x79, 0xa3, 0xa9, 0xa8, 0x74,
0xcc, 0x09, 0xfe, 0x76, 0xf6, 0x99, 0x76, 0x15
};
static uint8_t dec_seed[32] = {
0x4e, 0x6f, 0x74, 0x20, 0x74, 0x68, 0x65, 0x20, 0x64, 0x72, 0x6f, 0x69,
0x64, 0x73, 0x20, 0x79, 0x6f, 0x75, 0x27, 0x72, 0x65, 0x20, 0x6c, 0x6f,
0x6f, 0x6b, 0x69, 0x6e, 0x67, 0x20, 0x66, 0x6f
};
static uint8_t expected_rho[3][32] = {
{
0x7e, 0xfb, 0x9e, 0x40, 0xc3, 0xbf, 0x0f, 0xf0, 0x43, 0x29, 0x86, 0xae,
0x4b, 0xc1, 0xa2, 0x42, 0xce, 0x99, 0x21, 0xaa, 0x9e, 0x22, 0x44, 0x88,
0x19, 0x58, 0x5d, 0xea, 0x30, 0x8e, 0xb0, 0x39
},
{
0x16, 0x2e, 0xc0, 0x98, 0xa9, 0x00, 0xb1, 0x2d, 0xd8, 0xfa, 0xbb, 0xfb,
0x3f, 0xe8, 0xcb, 0x1d, 0xc4, 0xe8, 0x31, 0x5f, 0x2a, 0xf0, 0xd3, 0x2f,
0x00, 0x17, 0xae, 0x13, 0x6e, 0x19, 0xf0, 0x28
},
{
0x29, 0xb4, 0xf9, 0xf8, 0xcf, 0xba, 0xdf, 0x2e, 0x41, 0x86, 0x9a, 0xbf,
0xba, 0xd1, 0x07, 0x38, 0xad, 0x04, 0xcc, 0x75, 0x2b, 0xc2, 0x0c, 0x39,
0x47, 0x46, 0x85, 0x0e, 0x0c, 0x48, 0x47, 0xdb
}
};
static uint8_t expected_ctext_sha256[3][32] = {
{
0xbc, 0x29, 0xd7, 0xdf, 0x8b, 0xc5, 0x46, 0x5d, 0x98, 0x06, 0x01, 0xd8,
0x00, 0x25, 0x97, 0x93, 0xe2, 0x60, 0x38, 0x25, 0xa5, 0x72, 0xda, 0x6c,
0xd1, 0x98, 0xa5, 0x12, 0xcc, 0x6d, 0x1a, 0x34
},
{
0x36, 0x82, 0x9a, 0x2f, 0x35, 0xcb, 0xf4, 0xde, 0xb6, 0x2c, 0x0a, 0x12,
0xa1, 0x5c, 0x22, 0xda, 0xe9, 0xf8, 0xd2, 0xc2, 0x52, 0x56, 0x6f, 0xc2,
0x4f, 0x88, 0xab, 0xe8, 0x05, 0xcb, 0x57, 0x5e
},
{
0x50, 0x81, 0x36, 0xa1, 0x3f, 0x8a, 0x79, 0x20, 0xe3, 0x43, 0x44, 0x98,
0xc6, 0x97, 0x5c, 0xbb, 0xab, 0x45, 0x7d, 0x80, 0x93, 0x09, 0xeb, 0x2f,
0x92, 0x45, 0x3e, 0x74, 0x09, 0x73, 0x82, 0x10
}
};
static uint8_t expected_shared_secret[3][32] = {
{
0x31, 0x98, 0x39, 0xe8, 0x2a, 0xb6, 0xb2, 0x22, 0xde, 0x7b, 0x61, 0x9e,
0x80, 0xda, 0x83, 0x91, 0x52, 0x2b, 0xbb, 0x37, 0x67, 0x70, 0x18, 0x49,
0x4a, 0x47, 0x42, 0xc5, 0x3f, 0x9a, 0xbf, 0xdf
},
{
0xe7, 0x18, 0x4a, 0x09, 0x75, 0xee, 0x34, 0x70, 0x87, 0x8d, 0x2d, 0x15,
0x9e, 0xc8, 0x31, 0x29, 0xc8, 0xae, 0xc2, 0x53, 0xd4, 0xee, 0x17, 0xb4,
0x81, 0x03, 0x11, 0xd1, 0x98, 0xcd, 0x03, 0x68
},
{
0x48, 0x9d, 0xd1, 0xe9, 0xc2, 0xbe, 0x4a, 0xf3, 0x48, 0x2b, 0xdb, 0x35,
0xbb, 0x26, 0xce, 0x76, 0x0e, 0x6e, 0x41, 0x4d, 0xa6, 0xec, 0xbe, 0x48,
0x99, 0x85, 0x74, 0x8a, 0x82, 0x5f, 0x1c, 0xd6
},
};
static int test_ml_kem(void)
{
EVP_PKEY *akey, *bkey = NULL;
int res = 0;
size_t publen;
unsigned char *rawpub = NULL;
EVP_PKEY_CTX *ctx = NULL;
unsigned char *wrpkey = NULL, *agenkey = NULL, *bgenkey = NULL;
size_t wrpkeylen, agenkeylen, bgenkeylen, i;
/* Generate Alice's key */
akey = EVP_PKEY_Q_keygen(testctx, NULL, "ML-KEM-768");
if (!TEST_ptr(akey))
goto err;
/* Get the raw public key */
publen = EVP_PKEY_get1_encoded_public_key(akey, &rawpub);
if (!TEST_size_t_gt(publen, 0))
goto err;
/* Create Bob's key and populate it with Alice's public key data */
bkey = EVP_PKEY_new();
if (!TEST_ptr(bkey))
goto err;
if (!TEST_int_gt(EVP_PKEY_copy_parameters(bkey, akey), 0))
goto err;
if (!TEST_true(EVP_PKEY_set1_encoded_public_key(bkey, rawpub, publen)))
goto err;
/* Encapsulate Bob's key */
ctx = EVP_PKEY_CTX_new_from_pkey(testctx, bkey, NULL);
if (!TEST_ptr(ctx))
goto err;
if (!TEST_int_gt(EVP_PKEY_encapsulate_init(ctx, NULL), 0))
goto err;
if (!TEST_int_gt(EVP_PKEY_encapsulate(ctx, NULL, &wrpkeylen, NULL,
&bgenkeylen), 0))
goto err;
if (!TEST_size_t_gt(wrpkeylen, 0) || !TEST_size_t_gt(bgenkeylen, 0))
goto err;
wrpkey = OPENSSL_zalloc(wrpkeylen);
bgenkey = OPENSSL_zalloc(bgenkeylen);
if (!TEST_ptr(wrpkey) || !TEST_ptr(bgenkey))
goto err;
if (!TEST_int_gt(EVP_PKEY_encapsulate(ctx, wrpkey, &wrpkeylen, bgenkey,
&bgenkeylen), 0))
goto err;
EVP_PKEY_CTX_free(ctx);
/* Alice now decapsulates Bob's key */
ctx = EVP_PKEY_CTX_new_from_pkey(testctx, akey, NULL);
if (!TEST_ptr(ctx))
goto err;
if (!TEST_int_gt(EVP_PKEY_decapsulate_init(ctx, NULL), 0))
goto err;
if (!TEST_int_gt(EVP_PKEY_decapsulate(ctx, NULL, &agenkeylen, wrpkey,
wrpkeylen), 0))
goto err;
if (!TEST_size_t_gt(agenkeylen, 0))
goto err;
agenkey = OPENSSL_zalloc(agenkeylen);
if (!TEST_ptr(agenkey))
goto err;
if (!TEST_int_gt(EVP_PKEY_decapsulate(ctx, agenkey, &agenkeylen, wrpkey,
wrpkeylen), 0))
goto err;
/* Hopefully we ended up with a shared key */
if (!TEST_mem_eq(agenkey, agenkeylen, bgenkey, bgenkeylen))
goto err;
/* Verify we generated a non-zero shared key */
for (i = 0; i < agenkeylen; i++)
if (agenkey[i] != 0)
break;
if (!TEST_size_t_ne(i, agenkeylen))
goto err;
res = 1;
err:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(akey);
EVP_PKEY_free(bkey);
OPENSSL_free(rawpub);
OPENSSL_free(wrpkey);
OPENSSL_free(agenkey);
OPENSSL_free(bgenkey);
return res;
}
static int test_non_derandomised_ml_kem(void)
{
static const int alg[3] = {
EVP_PKEY_ML_KEM_512,
EVP_PKEY_ML_KEM_768,
EVP_PKEY_ML_KEM_1024
};
EVP_RAND_CTX *privctx;
EVP_RAND_CTX *pubctx;
EVP_MD *sha256;
int i, ret = 0;
if (!TEST_ptr(privctx = RAND_get0_private(NULL))
|| !TEST_ptr(pubctx = RAND_get0_public(NULL)))
return 0;
if (!TEST_ptr(sha256 = EVP_MD_fetch(NULL, "sha256", NULL)))
return 0;
for (i = 0; i < (int) OSSL_NELEM(alg); ++i) {
const ML_KEM_VINFO *v;
OSSL_PARAM params[3], *p;
uint8_t hash[32];
EVP_PKEY *akey = NULL, *bkey = NULL;
size_t publen;
unsigned char *rawpub = NULL;
EVP_PKEY_CTX *ctx = NULL;
unsigned char *wrpkey = NULL, *agenkey = NULL, *bgenkey = NULL;
size_t wrpkeylen, agenkeylen, bgenkeylen;
unsigned int strength = 256;
unsigned char c;
int res = -1;
if ((v = ossl_ml_kem_get_vinfo(alg[i])) == NULL)
goto done;
/* Configure the private RNG to output just the keygen seed */
p = params;
*p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
gen_seed, sizeof(gen_seed));
*p++ = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength);
*p = OSSL_PARAM_construct_end();
if (!TEST_true(EVP_RAND_CTX_set_params(privctx, params)))
goto done;
res = -2;
/* Generate Alice's key */
akey = EVP_PKEY_Q_keygen(testctx, NULL, v->algorithm_name);
if (!TEST_ptr(akey))
goto done;
/* Check that no more entropy is available! */
if (!TEST_int_le(RAND_priv_bytes(&c, 1), 0))
goto done;
/* Get the raw public key */
publen = EVP_PKEY_get1_encoded_public_key(akey, &rawpub);
if (!TEST_size_t_eq(publen, v->pubkey_bytes))
goto done;
res = -3;
/* Check that we got the expected 'rho' value in the ciphertext */
if (!TEST_mem_eq(rawpub + v->vector_bytes, ML_KEM_RANDOM_BYTES,
expected_rho[i], ML_KEM_RANDOM_BYTES))
goto done;
res = -4;
/* Create Bob's key and populate it with Alice's public key data */
bkey = EVP_PKEY_new();
if (!TEST_ptr(bkey))
goto done;
if (!TEST_int_gt(EVP_PKEY_copy_parameters(bkey, akey), 0))
goto done;
if (!TEST_true(EVP_PKEY_set1_encoded_public_key(bkey, rawpub, publen)))
goto done;
/* Configure the public RNG to output just the encap seed */
p = params;
*p = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
enc_seed, sizeof(enc_seed));
if (!TEST_true(EVP_RAND_CTX_set_params(pubctx, params)))
goto done;
/* Encapsulate Bob's key */
res = -5;
ctx = EVP_PKEY_CTX_new_from_pkey(testctx, bkey, NULL);
if (!TEST_ptr(ctx))
goto done;
if (!TEST_int_gt(EVP_PKEY_encapsulate_init(ctx, NULL), 0))
goto done;
if (!TEST_int_gt(EVP_PKEY_encapsulate(ctx, NULL, &wrpkeylen, NULL,
&bgenkeylen), 0))
goto done;
if (!TEST_size_t_eq(wrpkeylen, v->ctext_bytes)
|| !TEST_size_t_eq(bgenkeylen, ML_KEM_SHARED_SECRET_BYTES))
goto done;
wrpkey = OPENSSL_zalloc(wrpkeylen);
bgenkey = OPENSSL_zalloc(bgenkeylen);
if (!TEST_ptr(wrpkey) || !TEST_ptr(bgenkey))
goto done;
if (!TEST_true(EVP_PKEY_encapsulate(ctx, wrpkey, &wrpkeylen, bgenkey,
&bgenkeylen)))
goto done;
EVP_PKEY_CTX_free(ctx);
ctx = NULL;
/* Check that no more public entropy is available! */
if (!TEST_int_le(RAND_bytes(&c, 1), 0))
goto done;
res = -6;
/* Check the ciphertext hash */
if (!TEST_true(EVP_Digest(wrpkey, v->ctext_bytes,
hash, NULL, sha256, NULL))
|| !TEST_mem_eq(hash, sizeof(hash),
expected_ctext_sha256[i],
sizeof(expected_ctext_sha256[i])))
goto done;
/* Check for the expected shared secret */
if (!TEST_mem_eq(bgenkey, bgenkeylen,
expected_shared_secret[i], ML_KEM_SHARED_SECRET_BYTES))
goto done;
/*
* Alice now decapsulates Bob's key. Decap should not need a seed if
* the ciphertext length is good.
*/
res = -7;
ctx = EVP_PKEY_CTX_new_from_pkey(testctx, akey, NULL);
if (!TEST_ptr(ctx))
goto done;
if (!TEST_int_gt(EVP_PKEY_decapsulate_init(ctx, NULL), 0))
goto done;
if (!TEST_true(EVP_PKEY_decapsulate(ctx, NULL, &agenkeylen, wrpkey,
wrpkeylen)))
goto done;
if (!TEST_size_t_eq(agenkeylen, ML_KEM_SHARED_SECRET_BYTES))
goto done;
agenkey = OPENSSL_zalloc(agenkeylen);
if (!TEST_ptr(agenkey))
goto done;
if (!TEST_true(EVP_PKEY_decapsulate(ctx, agenkey, &agenkeylen, wrpkey,
wrpkeylen)))
goto done;
/* Hopefully we ended up with a shared key */
if (!TEST_mem_eq(agenkey, agenkeylen, bgenkey, bgenkeylen))
goto done;
res = -8;
/* Now a quick negative test by zeroing the ciphertext */
memset(wrpkey, 0, v->ctext_bytes);
if (!TEST_true(EVP_PKEY_decapsulate(ctx, agenkey, &agenkeylen, wrpkey,
wrpkeylen)))
goto done;
if (!TEST_mem_ne(agenkey, agenkeylen, bgenkey, bgenkeylen))
goto done;
res = -9;
/* Configure decap entropy for a bad ciphertext length */
p = params;
*p = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY,
dec_seed, sizeof(dec_seed));
if (!TEST_true(EVP_RAND_CTX_set_params(pubctx, params)))
goto done;
/* This time decap should fail, and return the decap entropy */
if (!TEST_false(EVP_PKEY_decapsulate(ctx, agenkey, &agenkeylen, wrpkey,
wrpkeylen - 1)))
goto done;
if (!TEST_mem_eq(agenkey, agenkeylen, dec_seed, sizeof(dec_seed)))
goto done;
res = 0;
done:
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(akey);
EVP_PKEY_free(bkey);
OPENSSL_free(rawpub);
OPENSSL_free(wrpkey);
OPENSSL_free(agenkey);
OPENSSL_free(bgenkey);
if (res != 0)
ret = res;
}
EVP_MD_free(sha256);
return ret == 0;
}
int setup_tests(void)
{
int test_rand = 0;
OPTION_CHOICE o;
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_TEST_RAND:
test_rand = 1;
break;
case OPT_TEST_CASES:
break;
default:
return 0;
}
}
if (test_rand != 0) {
/* Cargo-culted from test/rand_test.c, this may need changes */
if (!TEST_true(RAND_set_DRBG_type(NULL, "TEST-RAND", "fips=no",
NULL, NULL)))
return 0;
ADD_TEST(test_non_derandomised_ml_kem);
return 1;
}
ADD_TEST(test_ml_kem);
return 1;
}