Reviewed-by: Neil Horman <nhorman@openssl.org> Reviewed-by: Tim Hudson <tjh@openssl.org> Reviewed-by: Tomas Mraz <tomas@openssl.org> (Merged from https://github.com/openssl/openssl/pull/27091)
1738 lines
56 KiB
C
1738 lines
56 KiB
C
/*
|
|
* Copyright 2023-2025 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include "internal/quic_port.h"
|
|
#include "internal/quic_channel.h"
|
|
#include "internal/quic_lcidm.h"
|
|
#include "internal/quic_srtm.h"
|
|
#include "internal/quic_txp.h"
|
|
#include "internal/ssl_unwrap.h"
|
|
#include "quic_port_local.h"
|
|
#include "quic_channel_local.h"
|
|
#include "quic_engine_local.h"
|
|
#include "quic_local.h"
|
|
#include "../ssl_local.h"
|
|
#include <openssl/rand.h>
|
|
|
|
/*
|
|
* QUIC Port Structure
|
|
* ===================
|
|
*/
|
|
#define INIT_DCID_LEN 8
|
|
|
|
static int port_init(QUIC_PORT *port);
|
|
static void port_cleanup(QUIC_PORT *port);
|
|
static OSSL_TIME get_time(void *arg);
|
|
static void port_default_packet_handler(QUIC_URXE *e, void *arg,
|
|
const QUIC_CONN_ID *dcid);
|
|
static void port_rx_pre(QUIC_PORT *port);
|
|
|
|
/**
|
|
* @struct validation_token
|
|
* @brief Represents a validation token for secure connection handling.
|
|
*
|
|
* This struct is used to store information related to a validation token.
|
|
*
|
|
* @var validation_token::is_retry
|
|
* True iff this validation token is for a token sent in a RETRY packet.
|
|
* Otherwise, this token is from a NEW_TOKEN_packet. Iff this value is true,
|
|
* then ODCID and RSCID are set.
|
|
*
|
|
* @var validation_token::timestamp
|
|
* Time that the validation token was minted.
|
|
*
|
|
* @var validation_token::odcid
|
|
* An original connection ID (`QUIC_CONN_ID`) used to identify the QUIC
|
|
* connection. This ID helps associate the token with a specific connection.
|
|
* This will only be valid for validation tokens from RETRY packets.
|
|
*
|
|
* @var validation_token::rscid
|
|
* DCID that the client will use as the DCID of the subsequent initial packet
|
|
* i.e the "new" DCID.
|
|
* This will only be valid for validation tokens from RETRY packets.
|
|
*
|
|
* @var validation_token::remote_addr_len
|
|
* Length of the following character array.
|
|
*
|
|
* @var validation_token::remote_addr
|
|
* A character array holding the raw address of the client requesting the
|
|
* connection.
|
|
*/
|
|
typedef struct validation_token {
|
|
OSSL_TIME timestamp;
|
|
QUIC_CONN_ID odcid;
|
|
QUIC_CONN_ID rscid;
|
|
size_t remote_addr_len;
|
|
unsigned char *remote_addr;
|
|
unsigned char is_retry;
|
|
} QUIC_VALIDATION_TOKEN;
|
|
|
|
/*
|
|
* Maximum length of a marshalled validation token.
|
|
*
|
|
* - timestamp is 8 bytes
|
|
* - odcid and rscid are maximally 42 bytes in total
|
|
* - remote_addr_len is a size_t (8 bytes)
|
|
* - remote_addr is in the worst case 110 bytes (in the case of using a
|
|
* maximally sized AF_UNIX socket)
|
|
* - is_retry is a single byte
|
|
*/
|
|
#define MARSHALLED_TOKEN_MAX_LEN 169
|
|
|
|
/*
|
|
* Maximum length of an encrypted marshalled validation token.
|
|
*
|
|
* This will include the size of the marshalled validation token plus a 16 byte
|
|
* tag and a 12 byte IV, so in total 197 bytes.
|
|
*/
|
|
#define ENCRYPTED_TOKEN_MAX_LEN (MARSHALLED_TOKEN_MAX_LEN + 16 + 12)
|
|
|
|
DEFINE_LIST_OF_IMPL(ch, QUIC_CHANNEL);
|
|
DEFINE_LIST_OF_IMPL(incoming_ch, QUIC_CHANNEL);
|
|
DEFINE_LIST_OF_IMPL(port, QUIC_PORT);
|
|
|
|
QUIC_PORT *ossl_quic_port_new(const QUIC_PORT_ARGS *args)
|
|
{
|
|
QUIC_PORT *port;
|
|
|
|
if ((port = OPENSSL_zalloc(sizeof(QUIC_PORT))) == NULL)
|
|
return NULL;
|
|
|
|
port->engine = args->engine;
|
|
port->channel_ctx = args->channel_ctx;
|
|
port->is_multi_conn = args->is_multi_conn;
|
|
port->validate_addr = args->do_addr_validation;
|
|
port->get_conn_user_ssl = args->get_conn_user_ssl;
|
|
port->user_ssl_arg = args->user_ssl_arg;
|
|
|
|
if (!port_init(port)) {
|
|
OPENSSL_free(port);
|
|
return NULL;
|
|
}
|
|
|
|
return port;
|
|
}
|
|
|
|
void ossl_quic_port_free(QUIC_PORT *port)
|
|
{
|
|
if (port == NULL)
|
|
return;
|
|
|
|
port_cleanup(port);
|
|
OPENSSL_free(port);
|
|
}
|
|
|
|
static int port_init(QUIC_PORT *port)
|
|
{
|
|
size_t rx_short_dcid_len = (port->is_multi_conn ? INIT_DCID_LEN : 0);
|
|
int key_len;
|
|
EVP_CIPHER *cipher = NULL;
|
|
unsigned char *token_key = NULL;
|
|
int ret = 0;
|
|
|
|
if (port->engine == NULL || port->channel_ctx == NULL)
|
|
goto err;
|
|
|
|
if ((port->err_state = OSSL_ERR_STATE_new()) == NULL)
|
|
goto err;
|
|
|
|
if ((port->demux = ossl_quic_demux_new(/*BIO=*/NULL,
|
|
/*Short CID Len=*/rx_short_dcid_len,
|
|
get_time, port)) == NULL)
|
|
goto err;
|
|
|
|
ossl_quic_demux_set_default_handler(port->demux,
|
|
port_default_packet_handler,
|
|
port);
|
|
|
|
if ((port->srtm = ossl_quic_srtm_new(port->engine->libctx,
|
|
port->engine->propq)) == NULL)
|
|
goto err;
|
|
|
|
if ((port->lcidm = ossl_quic_lcidm_new(port->engine->libctx,
|
|
rx_short_dcid_len)) == NULL)
|
|
goto err;
|
|
|
|
port->rx_short_dcid_len = (unsigned char)rx_short_dcid_len;
|
|
port->tx_init_dcid_len = INIT_DCID_LEN;
|
|
port->state = QUIC_PORT_STATE_RUNNING;
|
|
|
|
ossl_list_port_insert_tail(&port->engine->port_list, port);
|
|
port->on_engine_list = 1;
|
|
port->bio_changed = 1;
|
|
|
|
/* Generate random key for token encryption */
|
|
if ((port->token_ctx = EVP_CIPHER_CTX_new()) == NULL
|
|
|| (cipher = EVP_CIPHER_fetch(port->engine->libctx,
|
|
"AES-256-GCM", NULL)) == NULL
|
|
|| !EVP_EncryptInit_ex(port->token_ctx, cipher, NULL, NULL, NULL)
|
|
|| (key_len = EVP_CIPHER_CTX_get_key_length(port->token_ctx)) <= 0
|
|
|| (token_key = OPENSSL_malloc(key_len)) == NULL
|
|
|| !RAND_bytes_ex(port->engine->libctx, token_key, key_len, 0)
|
|
|| !EVP_EncryptInit_ex(port->token_ctx, NULL, NULL, token_key, NULL))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
EVP_CIPHER_free(cipher);
|
|
OPENSSL_free(token_key);
|
|
if (!ret)
|
|
port_cleanup(port);
|
|
return ret;
|
|
}
|
|
|
|
static void port_cleanup(QUIC_PORT *port)
|
|
{
|
|
assert(ossl_list_ch_num(&port->channel_list) == 0);
|
|
|
|
ossl_quic_demux_free(port->demux);
|
|
port->demux = NULL;
|
|
|
|
ossl_quic_srtm_free(port->srtm);
|
|
port->srtm = NULL;
|
|
|
|
ossl_quic_lcidm_free(port->lcidm);
|
|
port->lcidm = NULL;
|
|
|
|
OSSL_ERR_STATE_free(port->err_state);
|
|
port->err_state = NULL;
|
|
|
|
if (port->on_engine_list) {
|
|
ossl_list_port_remove(&port->engine->port_list, port);
|
|
port->on_engine_list = 0;
|
|
}
|
|
|
|
EVP_CIPHER_CTX_free(port->token_ctx);
|
|
port->token_ctx = NULL;
|
|
}
|
|
|
|
static void port_transition_failed(QUIC_PORT *port)
|
|
{
|
|
if (port->state == QUIC_PORT_STATE_FAILED)
|
|
return;
|
|
|
|
port->state = QUIC_PORT_STATE_FAILED;
|
|
}
|
|
|
|
int ossl_quic_port_is_running(const QUIC_PORT *port)
|
|
{
|
|
return port->state == QUIC_PORT_STATE_RUNNING;
|
|
}
|
|
|
|
QUIC_ENGINE *ossl_quic_port_get0_engine(QUIC_PORT *port)
|
|
{
|
|
return port->engine;
|
|
}
|
|
|
|
QUIC_REACTOR *ossl_quic_port_get0_reactor(QUIC_PORT *port)
|
|
{
|
|
return ossl_quic_engine_get0_reactor(port->engine);
|
|
}
|
|
|
|
QUIC_DEMUX *ossl_quic_port_get0_demux(QUIC_PORT *port)
|
|
{
|
|
return port->demux;
|
|
}
|
|
|
|
CRYPTO_MUTEX *ossl_quic_port_get0_mutex(QUIC_PORT *port)
|
|
{
|
|
return ossl_quic_engine_get0_mutex(port->engine);
|
|
}
|
|
|
|
OSSL_TIME ossl_quic_port_get_time(QUIC_PORT *port)
|
|
{
|
|
return ossl_quic_engine_get_time(port->engine);
|
|
}
|
|
|
|
static OSSL_TIME get_time(void *port)
|
|
{
|
|
return ossl_quic_port_get_time((QUIC_PORT *)port);
|
|
}
|
|
|
|
int ossl_quic_port_get_rx_short_dcid_len(const QUIC_PORT *port)
|
|
{
|
|
return port->rx_short_dcid_len;
|
|
}
|
|
|
|
int ossl_quic_port_get_tx_init_dcid_len(const QUIC_PORT *port)
|
|
{
|
|
return port->tx_init_dcid_len;
|
|
}
|
|
|
|
size_t ossl_quic_port_get_num_incoming_channels(const QUIC_PORT *port)
|
|
{
|
|
return ossl_list_incoming_ch_num(&port->incoming_channel_list);
|
|
}
|
|
|
|
/*
|
|
* QUIC Port: Network BIO Configuration
|
|
* ====================================
|
|
*/
|
|
|
|
/* Determines whether we can support a given poll descriptor. */
|
|
static int validate_poll_descriptor(const BIO_POLL_DESCRIPTOR *d)
|
|
{
|
|
if (d->type == BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD && d->value.fd < 0) {
|
|
ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
BIO *ossl_quic_port_get_net_rbio(QUIC_PORT *port)
|
|
{
|
|
return port->net_rbio;
|
|
}
|
|
|
|
BIO *ossl_quic_port_get_net_wbio(QUIC_PORT *port)
|
|
{
|
|
return port->net_wbio;
|
|
}
|
|
|
|
static int port_update_poll_desc(QUIC_PORT *port, BIO *net_bio, int for_write)
|
|
{
|
|
BIO_POLL_DESCRIPTOR d = {0};
|
|
|
|
if (net_bio == NULL
|
|
|| (!for_write && !BIO_get_rpoll_descriptor(net_bio, &d))
|
|
|| (for_write && !BIO_get_wpoll_descriptor(net_bio, &d)))
|
|
/* Non-pollable BIO */
|
|
d.type = BIO_POLL_DESCRIPTOR_TYPE_NONE;
|
|
|
|
if (!validate_poll_descriptor(&d))
|
|
return 0;
|
|
|
|
/*
|
|
* TODO(QUIC MULTIPORT): We currently only support one port per
|
|
* engine/domain. This is necessitated because QUIC_REACTOR only supports a
|
|
* single pollable currently. In the future, once complete polling
|
|
* infrastructure has been implemented, this limitation can be removed.
|
|
*
|
|
* For now, just update the descriptor on the engine's reactor as we are
|
|
* guaranteed to be the only port under it.
|
|
*/
|
|
if (for_write)
|
|
ossl_quic_reactor_set_poll_w(&port->engine->rtor, &d);
|
|
else
|
|
ossl_quic_reactor_set_poll_r(&port->engine->rtor, &d);
|
|
|
|
return 1;
|
|
}
|
|
|
|
int ossl_quic_port_update_poll_descriptors(QUIC_PORT *port, int force)
|
|
{
|
|
int ok = 1;
|
|
|
|
if (!force && !port->bio_changed)
|
|
return 0;
|
|
|
|
if (!port_update_poll_desc(port, port->net_rbio, /*for_write=*/0))
|
|
ok = 0;
|
|
|
|
if (!port_update_poll_desc(port, port->net_wbio, /*for_write=*/1))
|
|
ok = 0;
|
|
|
|
port->bio_changed = 0;
|
|
return ok;
|
|
}
|
|
|
|
/*
|
|
* We need to determine our addressing mode. There are basically two ways we can
|
|
* use L4 addresses:
|
|
*
|
|
* - Addressed mode, in which our BIO_sendmmsg calls have destination
|
|
* addresses attached to them which we expect the underlying network BIO to
|
|
* handle;
|
|
*
|
|
* - Unaddressed mode, in which the BIO provided to us on the network side
|
|
* neither provides us with L4 addresses nor is capable of honouring ones we
|
|
* provide. We don't know where the QUIC traffic we send ends up exactly and
|
|
* trust the application to know what it is doing.
|
|
*
|
|
* Addressed mode is preferred because it enables support for connection
|
|
* migration, multipath, etc. in the future. Addressed mode is automatically
|
|
* enabled if we are using e.g. BIO_s_datagram, with or without BIO_s_connect.
|
|
*
|
|
* If we are passed a BIO_s_dgram_pair (or some custom BIO) we may have to use
|
|
* unaddressed mode unless that BIO supports capability flags indicating it can
|
|
* provide and honour L4 addresses.
|
|
*
|
|
* Our strategy for determining address mode is simple: we probe the underlying
|
|
* network BIOs for their capabilities. If the network BIOs support what we
|
|
* need, we use addressed mode. Otherwise, we use unaddressed mode.
|
|
*
|
|
* If addressed mode is chosen, we require an initial peer address to be set. If
|
|
* this is not set, we fail. If unaddressed mode is used, we do not require
|
|
* this, as such an address is superfluous, though it can be set if desired.
|
|
*/
|
|
static void port_update_addressing_mode(QUIC_PORT *port)
|
|
{
|
|
long rcaps = 0, wcaps = 0;
|
|
|
|
if (port->net_rbio != NULL)
|
|
rcaps = BIO_dgram_get_effective_caps(port->net_rbio);
|
|
|
|
if (port->net_wbio != NULL)
|
|
wcaps = BIO_dgram_get_effective_caps(port->net_wbio);
|
|
|
|
port->addressed_mode_r = ((rcaps & BIO_DGRAM_CAP_PROVIDES_SRC_ADDR) != 0);
|
|
port->addressed_mode_w = ((wcaps & BIO_DGRAM_CAP_HANDLES_DST_ADDR) != 0);
|
|
port->bio_changed = 1;
|
|
}
|
|
|
|
int ossl_quic_port_is_addressed_r(const QUIC_PORT *port)
|
|
{
|
|
return port->addressed_mode_r;
|
|
}
|
|
|
|
int ossl_quic_port_is_addressed_w(const QUIC_PORT *port)
|
|
{
|
|
return port->addressed_mode_w;
|
|
}
|
|
|
|
int ossl_quic_port_is_addressed(const QUIC_PORT *port)
|
|
{
|
|
return ossl_quic_port_is_addressed_r(port) && ossl_quic_port_is_addressed_w(port);
|
|
}
|
|
|
|
/*
|
|
* QUIC_PORT does not ref any BIO it is provided with, nor is any ref
|
|
* transferred to it. The caller (e.g., QUIC_CONNECTION) is responsible for
|
|
* ensuring the BIO lasts until the channel is freed or the BIO is switched out
|
|
* for another BIO by a subsequent successful call to this function.
|
|
*/
|
|
int ossl_quic_port_set_net_rbio(QUIC_PORT *port, BIO *net_rbio)
|
|
{
|
|
if (port->net_rbio == net_rbio)
|
|
return 1;
|
|
|
|
if (!port_update_poll_desc(port, net_rbio, /*for_write=*/0))
|
|
return 0;
|
|
|
|
ossl_quic_demux_set_bio(port->demux, net_rbio);
|
|
port->net_rbio = net_rbio;
|
|
port_update_addressing_mode(port);
|
|
return 1;
|
|
}
|
|
|
|
int ossl_quic_port_set_net_wbio(QUIC_PORT *port, BIO *net_wbio)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
if (port->net_wbio == net_wbio)
|
|
return 1;
|
|
|
|
if (!port_update_poll_desc(port, net_wbio, /*for_write=*/1))
|
|
return 0;
|
|
|
|
OSSL_LIST_FOREACH(ch, ch, &port->channel_list)
|
|
ossl_qtx_set_bio(ch->qtx, net_wbio);
|
|
|
|
port->net_wbio = net_wbio;
|
|
port_update_addressing_mode(port);
|
|
return 1;
|
|
}
|
|
|
|
SSL_CTX *ossl_quic_port_get_channel_ctx(QUIC_PORT *port)
|
|
{
|
|
return port->channel_ctx;
|
|
}
|
|
|
|
/*
|
|
* QUIC Port: Channel Lifecycle
|
|
* ============================
|
|
*/
|
|
|
|
static SSL *port_new_handshake_layer(QUIC_PORT *port, QUIC_CHANNEL *ch)
|
|
{
|
|
SSL *tls = NULL;
|
|
SSL_CONNECTION *tls_conn = NULL;
|
|
SSL *user_ssl = NULL;
|
|
QUIC_CONNECTION *qc = NULL;
|
|
QUIC_LISTENER *ql = NULL;
|
|
|
|
if (port->get_conn_user_ssl != NULL) {
|
|
user_ssl = port->get_conn_user_ssl(ch, port->user_ssl_arg);
|
|
if (user_ssl == NULL)
|
|
return NULL;
|
|
qc = (QUIC_CONNECTION *)user_ssl;
|
|
ql = (QUIC_LISTENER *)port->user_ssl_arg;
|
|
}
|
|
|
|
tls = ossl_ssl_connection_new_int(port->channel_ctx, user_ssl, TLS_method());
|
|
if (tls == NULL || (tls_conn = SSL_CONNECTION_FROM_SSL(tls)) == NULL) {
|
|
SSL_free(user_ssl);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If we got a user ssl, which will be embedded in a quic connection
|
|
* we need to fix up the connections tls pointer here
|
|
*/
|
|
if (qc != NULL)
|
|
qc->tls = tls;
|
|
|
|
if (ql != NULL && ql->obj.ssl.ctx->new_pending_conn_cb != NULL)
|
|
if (!ql->obj.ssl.ctx->new_pending_conn_cb(ql->obj.ssl.ctx, user_ssl,
|
|
ql->obj.ssl.ctx->new_pending_conn_arg)) {
|
|
SSL_free(tls);
|
|
SSL_free(user_ssl);
|
|
if (qc != NULL)
|
|
qc->tls = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/* Override the user_ssl of the inner connection. */
|
|
tls_conn->s3.flags |= TLS1_FLAGS_QUIC | TLS1_FLAGS_QUIC_INTERNAL;
|
|
|
|
/* Restrict options derived from the SSL_CTX. */
|
|
tls_conn->options &= OSSL_QUIC_PERMITTED_OPTIONS_CONN;
|
|
tls_conn->pha_enabled = 0;
|
|
return tls;
|
|
}
|
|
|
|
static QUIC_CHANNEL *port_make_channel(QUIC_PORT *port, SSL *tls, OSSL_QRX *qrx,
|
|
int is_server, int is_tserver)
|
|
{
|
|
QUIC_CHANNEL_ARGS args = {0};
|
|
QUIC_CHANNEL *ch;
|
|
|
|
args.port = port;
|
|
args.is_server = is_server;
|
|
args.lcidm = port->lcidm;
|
|
args.srtm = port->srtm;
|
|
args.qrx = qrx;
|
|
args.is_tserver_ch = is_tserver;
|
|
|
|
/*
|
|
* Creating a a new channel is made a bit tricky here as there is a
|
|
* bit of a circular dependency. Initalizing a channel requires that
|
|
* the ch->tls and optionally the qlog_title be configured prior to
|
|
* initalization, but we need the channel at least partially configured
|
|
* to create the new handshake layer, so we have to do this in a few steps.
|
|
*/
|
|
|
|
/*
|
|
* start by allocation and provisioning as much of the channel as we can
|
|
*/
|
|
ch = ossl_quic_channel_alloc(&args);
|
|
if (ch == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* Fixup the channel tls connection here before we init the channel
|
|
*/
|
|
ch->tls = (tls != NULL) ? tls : port_new_handshake_layer(port, ch);
|
|
|
|
#ifndef OPENSSL_NO_QLOG
|
|
/*
|
|
* If we're using qlog, make sure the tls get further configured properly
|
|
*/
|
|
ch->use_qlog = 1;
|
|
if (ch->tls->ctx->qlog_title != NULL) {
|
|
if ((ch->qlog_title = OPENSSL_strdup(ch->tls->ctx->qlog_title)) == NULL) {
|
|
OPENSSL_free(ch);
|
|
return NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* And finally init the channel struct
|
|
*/
|
|
if (!ossl_quic_channel_init(ch)) {
|
|
SSL_free(ch->tls);
|
|
OPENSSL_free(ch);
|
|
return NULL;
|
|
}
|
|
|
|
ossl_qtx_set_bio(ch->qtx, port->net_wbio);
|
|
return ch;
|
|
}
|
|
|
|
QUIC_CHANNEL *ossl_quic_port_create_outgoing(QUIC_PORT *port, SSL *tls)
|
|
{
|
|
return port_make_channel(port, tls, NULL, /* is_server= */ 0,
|
|
/* is_tserver= */ 0);
|
|
}
|
|
|
|
QUIC_CHANNEL *ossl_quic_port_create_incoming(QUIC_PORT *port, SSL *tls)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
assert(port->tserver_ch == NULL);
|
|
|
|
/*
|
|
* pass -1 for qrx to indicate port will create qrx
|
|
* later in port_default_packet_handler() when calling port_bind_channel().
|
|
*/
|
|
ch = port_make_channel(port, tls, NULL, /* is_server= */ 1,
|
|
/* is_tserver_ch */ 1);
|
|
port->tserver_ch = ch;
|
|
port->allow_incoming = 1;
|
|
return ch;
|
|
}
|
|
|
|
QUIC_CHANNEL *ossl_quic_port_pop_incoming(QUIC_PORT *port)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
ch = ossl_list_incoming_ch_head(&port->incoming_channel_list);
|
|
if (ch == NULL)
|
|
return NULL;
|
|
|
|
ossl_list_incoming_ch_remove(&port->incoming_channel_list, ch);
|
|
return ch;
|
|
}
|
|
|
|
int ossl_quic_port_have_incoming(QUIC_PORT *port)
|
|
{
|
|
return ossl_list_incoming_ch_head(&port->incoming_channel_list) != NULL;
|
|
}
|
|
|
|
void ossl_quic_port_drop_incoming(QUIC_PORT *port)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
SSL *tls;
|
|
SSL *user_ssl;
|
|
SSL_CONNECTION *sc;
|
|
|
|
for (;;) {
|
|
ch = ossl_quic_port_pop_incoming(port);
|
|
if (ch == NULL)
|
|
break;
|
|
|
|
tls = ossl_quic_channel_get0_tls(ch);
|
|
/*
|
|
* The user ssl may or may not have been created via the
|
|
* get_conn_user_ssl callback in the QUIC stack. The
|
|
* differentiation being if the user_ssl pointer and tls pointer
|
|
* are different. If they are, then the user_ssl needs freeing here
|
|
* which sends us through ossl_quic_free, which then drops the actual
|
|
* ch->tls ref and frees the channel
|
|
*/
|
|
sc = SSL_CONNECTION_FROM_SSL(tls);
|
|
if (sc == NULL)
|
|
break;
|
|
|
|
user_ssl = SSL_CONNECTION_GET_USER_SSL(sc);
|
|
if (user_ssl == tls) {
|
|
ossl_quic_channel_free(ch);
|
|
SSL_free(tls);
|
|
} else {
|
|
SSL_free(user_ssl);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ossl_quic_port_set_allow_incoming(QUIC_PORT *port, int allow_incoming)
|
|
{
|
|
port->allow_incoming = allow_incoming;
|
|
}
|
|
|
|
/*
|
|
* QUIC Port: Ticker-Mutator
|
|
* =========================
|
|
*/
|
|
|
|
/*
|
|
* Tick function for this port. This does everything related to network I/O for
|
|
* this port's network BIOs, and services child channels.
|
|
*/
|
|
void ossl_quic_port_subtick(QUIC_PORT *port, QUIC_TICK_RESULT *res,
|
|
uint32_t flags)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
res->net_read_desired = ossl_quic_port_is_running(port);
|
|
res->net_write_desired = 0;
|
|
res->notify_other_threads = 0;
|
|
res->tick_deadline = ossl_time_infinite();
|
|
|
|
if (!port->engine->inhibit_tick) {
|
|
/* Handle any incoming data from network. */
|
|
if (ossl_quic_port_is_running(port))
|
|
port_rx_pre(port);
|
|
|
|
/* Iterate through all channels and service them. */
|
|
OSSL_LIST_FOREACH(ch, ch, &port->channel_list) {
|
|
QUIC_TICK_RESULT subr = {0};
|
|
|
|
ossl_quic_channel_subtick(ch, &subr, flags);
|
|
ossl_quic_tick_result_merge_into(res, &subr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Process incoming datagrams, if any. */
|
|
static void port_rx_pre(QUIC_PORT *port)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Originally, this check (don't RX before we have sent anything if we are
|
|
* not a server, because there can't be anything) was just intended as a
|
|
* minor optimisation. However, it is actually required on Windows, and
|
|
* removing this check will cause Windows to break.
|
|
*
|
|
* The reason is that under Win32, recvfrom() does not work on a UDP socket
|
|
* which has not had bind() called (???). However, calling sendto() will
|
|
* automatically bind an unbound UDP socket. Therefore, if we call a Winsock
|
|
* recv-type function before calling a Winsock send-type function, that call
|
|
* will fail with WSAEINVAL, which we will regard as a permanent network
|
|
* error.
|
|
*
|
|
* Therefore, this check is essential as we do not require our API users to
|
|
* bind a socket first when using the API in client mode.
|
|
*/
|
|
if (!port->allow_incoming && !port->have_sent_any_pkt)
|
|
return;
|
|
|
|
/*
|
|
* Get DEMUX to BIO_recvmmsg from the network and queue incoming datagrams
|
|
* to the appropriate QRX instances.
|
|
*/
|
|
ret = ossl_quic_demux_pump(port->demux);
|
|
if (ret == QUIC_DEMUX_PUMP_RES_PERMANENT_FAIL)
|
|
/*
|
|
* We don't care about transient failure, but permanent failure means we
|
|
* should tear down the port. All connections skip straight to the
|
|
* Terminated state as there is no point trying to send CONNECTION_CLOSE
|
|
* frames if the network BIO is not operating correctly.
|
|
*/
|
|
ossl_quic_port_raise_net_error(port, NULL);
|
|
}
|
|
|
|
/*
|
|
* Handles an incoming connection request and potentially decides to make a
|
|
* connection from it. If a new connection is made, the new channel is written
|
|
* to *new_ch.
|
|
*/
|
|
static void port_bind_channel(QUIC_PORT *port, const BIO_ADDR *peer,
|
|
const QUIC_CONN_ID *scid, const QUIC_CONN_ID *dcid,
|
|
const QUIC_CONN_ID *odcid, OSSL_QRX *qrx,
|
|
QUIC_CHANNEL **new_ch)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
/*
|
|
* If we're running with a simulated tserver, it will already have
|
|
* a dummy channel created, use that instead
|
|
*/
|
|
if (port->tserver_ch != NULL) {
|
|
ch = port->tserver_ch;
|
|
port->tserver_ch = NULL;
|
|
ossl_quic_channel_bind_qrx(ch, qrx);
|
|
ossl_qrx_set_msg_callback(ch->qrx, ch->msg_callback,
|
|
ch->msg_callback_ssl);
|
|
ossl_qrx_set_msg_callback_arg(ch->qrx, ch->msg_callback_arg);
|
|
} else {
|
|
ch = port_make_channel(port, NULL, qrx, /* is_server= */ 1,
|
|
/* is_tserver */ 0);
|
|
}
|
|
|
|
if (ch == NULL)
|
|
return;
|
|
|
|
/*
|
|
* If we didn't provide a qrx here that means we need to set our initial
|
|
* secret here, since we just created a qrx
|
|
* Normally its not needed, as the initial secret gets added when we send
|
|
* our first server hello, but if we get a huge client hello, crossing
|
|
* multiple datagrams, we don't have a chance to do that, and datagrams
|
|
* after the first won't get decoded properly, for lack of secrets
|
|
*/
|
|
if (qrx == NULL)
|
|
if (!ossl_quic_provide_initial_secret(ch->port->engine->libctx,
|
|
ch->port->engine->propq,
|
|
dcid, /* is_server */ 1,
|
|
ch->qrx, NULL))
|
|
return;
|
|
|
|
if (odcid->id_len != 0) {
|
|
/*
|
|
* If we have an odcid, then we went through server address validation
|
|
* and as such, this channel need not conform to the 3x validation cap
|
|
* See RFC 9000 s. 8.1
|
|
*/
|
|
ossl_quic_tx_packetiser_set_validated(ch->txp);
|
|
if (!ossl_quic_bind_channel(ch, peer, scid, dcid, odcid)) {
|
|
ossl_quic_channel_free(ch);
|
|
return;
|
|
}
|
|
} else {
|
|
/*
|
|
* No odcid means we didn't do server validation, so we need to
|
|
* generate a cid via ossl_quic_channel_on_new_conn
|
|
*/
|
|
if (!ossl_quic_channel_on_new_conn(ch, peer, scid, dcid)) {
|
|
ossl_quic_channel_free(ch);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ossl_list_incoming_ch_insert_tail(&port->incoming_channel_list, ch);
|
|
*new_ch = ch;
|
|
}
|
|
|
|
static int port_try_handle_stateless_reset(QUIC_PORT *port, const QUIC_URXE *e)
|
|
{
|
|
size_t i;
|
|
const unsigned char *data = ossl_quic_urxe_data(e);
|
|
void *opaque = NULL;
|
|
|
|
/*
|
|
* Perform some fast and cheap checks for a packet not being a stateless
|
|
* reset token. RFC 9000 s. 10.3 specifies this layout for stateless
|
|
* reset packets:
|
|
*
|
|
* Stateless Reset {
|
|
* Fixed Bits (2) = 1,
|
|
* Unpredictable Bits (38..),
|
|
* Stateless Reset Token (128),
|
|
* }
|
|
*
|
|
* It also specifies:
|
|
* However, endpoints MUST treat any packet ending in a valid
|
|
* stateless reset token as a Stateless Reset, as other QUIC
|
|
* versions might allow the use of a long header.
|
|
*
|
|
* We can rapidly check for the minimum length and that the first pair
|
|
* of bits in the first byte are 01 or 11.
|
|
*
|
|
* The function returns 1 if it is a stateless reset packet, 0 if it isn't
|
|
* and -1 if an error was encountered.
|
|
*/
|
|
if (e->data_len < QUIC_STATELESS_RESET_TOKEN_LEN + 5
|
|
|| (0100 & *data) != 0100)
|
|
return 0;
|
|
|
|
for (i = 0;; ++i) {
|
|
if (!ossl_quic_srtm_lookup(port->srtm,
|
|
(QUIC_STATELESS_RESET_TOKEN *)(data + e->data_len
|
|
- sizeof(QUIC_STATELESS_RESET_TOKEN)),
|
|
i, &opaque, NULL))
|
|
break;
|
|
|
|
assert(opaque != NULL);
|
|
ossl_quic_channel_on_stateless_reset((QUIC_CHANNEL *)opaque);
|
|
}
|
|
|
|
return i > 0;
|
|
}
|
|
|
|
static void cleanup_validation_token(QUIC_VALIDATION_TOKEN *token)
|
|
{
|
|
OPENSSL_free(token->remote_addr);
|
|
}
|
|
|
|
/**
|
|
* @brief Generates a validation token for a RETRY/NEW_TOKEN packet.
|
|
*
|
|
*
|
|
* @param peer Address of the client peer receiving the packet.
|
|
* @param odcid DCID of the connection attempt.
|
|
* @param rscid Retry source connection ID of the connection attempt.
|
|
* @param token Address of token to fill data.
|
|
*
|
|
* @return 1 if validation token is filled successfully, 0 otherwise.
|
|
*/
|
|
static int generate_token(BIO_ADDR *peer, QUIC_CONN_ID odcid,
|
|
QUIC_CONN_ID rscid, QUIC_VALIDATION_TOKEN *token,
|
|
int is_retry)
|
|
{
|
|
token->is_retry = is_retry;
|
|
token->timestamp = ossl_time_now();
|
|
token->remote_addr = NULL;
|
|
token->odcid = odcid;
|
|
token->rscid = rscid;
|
|
|
|
if (!BIO_ADDR_rawaddress(peer, NULL, &token->remote_addr_len)
|
|
|| token->remote_addr_len == 0
|
|
|| (token->remote_addr = OPENSSL_malloc(token->remote_addr_len)) == NULL
|
|
|| !BIO_ADDR_rawaddress(peer, token->remote_addr,
|
|
&token->remote_addr_len)) {
|
|
cleanup_validation_token(token);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Marshals a validation token into a new buffer.
|
|
*
|
|
* |buffer| should already be allocated and at least MARSHALLED_TOKEN_MAX_LEN
|
|
* bytes long. Stores the length of data stored in |buffer| in |buffer_len|.
|
|
*
|
|
* @param token Validation token.
|
|
* @param buffer Address to store the marshalled token.
|
|
* @param buffer_len Size of data stored in |buffer|.
|
|
*/
|
|
static int marshal_validation_token(QUIC_VALIDATION_TOKEN *token,
|
|
unsigned char *buffer, size_t *buffer_len)
|
|
{
|
|
WPACKET wpkt = {0};
|
|
BUF_MEM *buf_mem = BUF_MEM_new();
|
|
|
|
if (buffer == NULL || buf_mem == NULL
|
|
|| (token->is_retry != 0 && token->is_retry != 1)) {
|
|
BUF_MEM_free(buf_mem);
|
|
return 0;
|
|
}
|
|
|
|
if (!WPACKET_init(&wpkt, buf_mem)
|
|
|| !WPACKET_memset(&wpkt, token->is_retry, 1)
|
|
|| !WPACKET_memcpy(&wpkt, &token->timestamp,
|
|
sizeof(token->timestamp))
|
|
|| (token->is_retry
|
|
&& (!WPACKET_sub_memcpy_u8(&wpkt, &token->odcid.id,
|
|
token->odcid.id_len)
|
|
|| !WPACKET_sub_memcpy_u8(&wpkt, &token->rscid.id,
|
|
token->rscid.id_len)))
|
|
|| !WPACKET_sub_memcpy_u8(&wpkt, token->remote_addr, token->remote_addr_len)
|
|
|| !WPACKET_get_total_written(&wpkt, buffer_len)
|
|
|| *buffer_len > MARSHALLED_TOKEN_MAX_LEN
|
|
|| !WPACKET_finish(&wpkt)) {
|
|
WPACKET_cleanup(&wpkt);
|
|
BUF_MEM_free(buf_mem);
|
|
return 0;
|
|
}
|
|
|
|
memcpy(buffer, buf_mem->data, *buffer_len);
|
|
BUF_MEM_free(buf_mem);
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Encrypts a validation token using AES-256-GCM
|
|
*
|
|
* @param port The QUIC port containing the encryption key
|
|
* @param plaintext The data to encrypt
|
|
* @param pt_len Length of the plaintext
|
|
* @param ciphertext Buffer to receive encrypted data. If NULL, ct_len will be
|
|
* set to the required buffer size and function returns
|
|
* immediately.
|
|
* @param ct_len Pointer to size_t that will receive the ciphertext length.
|
|
* This also includes bytes for QUIC_RETRY_INTEGRITY_TAG_LEN.
|
|
*
|
|
* @return 1 on success, 0 on failure
|
|
*
|
|
* The ciphertext format is:
|
|
* [EVP_GCM_IV_LEN bytes IV][encrypted data][EVP_GCM_TAG_LEN bytes tag]
|
|
*/
|
|
static int encrypt_validation_token(const QUIC_PORT *port,
|
|
const unsigned char *plaintext,
|
|
size_t pt_len,
|
|
unsigned char *ciphertext,
|
|
size_t *ct_len)
|
|
{
|
|
int iv_len, len, ret = 0;
|
|
size_t tag_len;
|
|
unsigned char *iv = ciphertext, *data, *tag;
|
|
|
|
if ((tag_len = EVP_CIPHER_CTX_get_tag_length(port->token_ctx)) == 0
|
|
|| (iv_len = EVP_CIPHER_CTX_get_iv_length(port->token_ctx)) <= 0)
|
|
goto err;
|
|
|
|
*ct_len = iv_len + pt_len + tag_len + QUIC_RETRY_INTEGRITY_TAG_LEN;
|
|
if (ciphertext == NULL) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
data = ciphertext + iv_len;
|
|
tag = data + pt_len;
|
|
|
|
if (!RAND_bytes_ex(port->engine->libctx, ciphertext, iv_len, 0)
|
|
|| !EVP_EncryptInit_ex(port->token_ctx, NULL, NULL, NULL, iv)
|
|
|| !EVP_EncryptUpdate(port->token_ctx, data, &len, plaintext, pt_len)
|
|
|| !EVP_EncryptFinal_ex(port->token_ctx, data + pt_len, &len)
|
|
|| !EVP_CIPHER_CTX_ctrl(port->token_ctx, EVP_CTRL_GCM_GET_TAG, tag_len, tag))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Decrypts a validation token using AES-256-GCM
|
|
*
|
|
* @param port The QUIC port containing the decryption key
|
|
* @param ciphertext The encrypted data (including IV and tag)
|
|
* @param ct_len Length of the ciphertext
|
|
* @param plaintext Buffer to receive decrypted data. If NULL, pt_len will be
|
|
* set to the required buffer size.
|
|
* @param pt_len Pointer to size_t that will receive the plaintext length
|
|
*
|
|
* @return 1 on success, 0 on failure
|
|
*
|
|
* Expected ciphertext format:
|
|
* [EVP_GCM_IV_LEN bytes IV][encrypted data][EVP_GCM_TAG_LEN bytes tag]
|
|
*/
|
|
static int decrypt_validation_token(const QUIC_PORT *port,
|
|
const unsigned char *ciphertext,
|
|
size_t ct_len,
|
|
unsigned char *plaintext,
|
|
size_t *pt_len)
|
|
{
|
|
int iv_len, len = 0, ret = 0;
|
|
size_t tag_len;
|
|
const unsigned char *iv = ciphertext, *data, *tag;
|
|
|
|
if ((tag_len = EVP_CIPHER_CTX_get_tag_length(port->token_ctx)) == 0
|
|
|| (iv_len = EVP_CIPHER_CTX_get_iv_length(port->token_ctx)) <= 0)
|
|
goto err;
|
|
|
|
/* Prevent decryption of a buffer that is not within reasonable bounds */
|
|
if (ct_len < (iv_len + tag_len) || ct_len > ENCRYPTED_TOKEN_MAX_LEN)
|
|
goto err;
|
|
|
|
*pt_len = ct_len - iv_len - tag_len;
|
|
if (plaintext == NULL) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
data = ciphertext + iv_len;
|
|
tag = ciphertext + ct_len - tag_len;
|
|
|
|
if (!EVP_DecryptInit_ex(port->token_ctx, NULL, NULL, NULL, iv)
|
|
|| !EVP_DecryptUpdate(port->token_ctx, plaintext, &len, data,
|
|
ct_len - iv_len - tag_len)
|
|
|| !EVP_CIPHER_CTX_ctrl(port->token_ctx, EVP_CTRL_GCM_SET_TAG, tag_len,
|
|
(void *)tag)
|
|
|| !EVP_DecryptFinal_ex(port->token_ctx, plaintext + len, &len))
|
|
goto err;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Parses contents of a buffer into a validation token.
|
|
*
|
|
* VALIDATION_TOKEN should already be initalized. Does some basic sanity checks.
|
|
*
|
|
* @param token Validation token to fill data in.
|
|
* @param buf Buffer of previously marshaled validation token.
|
|
* @param buf_len Length of |buf|.
|
|
*/
|
|
static int parse_validation_token(QUIC_VALIDATION_TOKEN *token,
|
|
const unsigned char *buf, size_t buf_len)
|
|
{
|
|
PACKET pkt, subpkt;
|
|
|
|
if (buf == NULL || token == NULL)
|
|
return 0;
|
|
|
|
token->remote_addr = NULL;
|
|
|
|
if (!PACKET_buf_init(&pkt, buf, buf_len)
|
|
|| !PACKET_copy_bytes(&pkt, &token->is_retry, sizeof(token->is_retry))
|
|
|| !(token->is_retry == 0 || token->is_retry == 1)
|
|
|| !PACKET_copy_bytes(&pkt, (unsigned char *)&token->timestamp,
|
|
sizeof(token->timestamp))
|
|
|| (token->is_retry
|
|
&& (!PACKET_get_length_prefixed_1(&pkt, &subpkt)
|
|
|| (token->odcid.id_len = (unsigned char)PACKET_remaining(&subpkt))
|
|
> QUIC_MAX_CONN_ID_LEN
|
|
|| !PACKET_copy_bytes(&subpkt,
|
|
(unsigned char *)&token->odcid.id,
|
|
token->odcid.id_len)
|
|
|| !PACKET_get_length_prefixed_1(&pkt, &subpkt)
|
|
|| (token->rscid.id_len = (unsigned char)PACKET_remaining(&subpkt))
|
|
> QUIC_MAX_CONN_ID_LEN
|
|
|| !PACKET_copy_bytes(&subpkt, (unsigned char *)&token->rscid.id,
|
|
token->rscid.id_len)))
|
|
|| !PACKET_get_length_prefixed_1(&pkt, &subpkt)
|
|
|| (token->remote_addr_len = PACKET_remaining(&subpkt)) == 0
|
|
|| (token->remote_addr = OPENSSL_malloc(token->remote_addr_len)) == NULL
|
|
|| !PACKET_copy_bytes(&subpkt, token->remote_addr, token->remote_addr_len)
|
|
|| PACKET_remaining(&pkt) != 0) {
|
|
cleanup_validation_token(token);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Sends a QUIC Retry packet to a client.
|
|
*
|
|
* This function constructs and sends a Retry packet to the specified client
|
|
* using the provided connection header information. The Retry packet
|
|
* includes a generated validation token and a new connection ID, following
|
|
* the QUIC protocol specifications for connection establishment.
|
|
*
|
|
* @param port Pointer to the QUIC port from which to send the packet.
|
|
* @param peer Address of the client peer receiving the packet.
|
|
* @param client_hdr Header of the client's initial packet, containing
|
|
* connection IDs and other relevant information.
|
|
*
|
|
* This function performs the following steps:
|
|
* - Generates a validation token for the client.
|
|
* - Sets the destination and source connection IDs.
|
|
* - Calculates the integrity tag and sets the token length.
|
|
* - Encodes and sends the packet via the BIO network interface.
|
|
*
|
|
* Error handling is included for failures in CID generation, encoding, and
|
|
* network transmiss
|
|
*/
|
|
static void port_send_retry(QUIC_PORT *port,
|
|
BIO_ADDR *peer,
|
|
QUIC_PKT_HDR *client_hdr)
|
|
{
|
|
BIO_MSG msg[1];
|
|
/*
|
|
* Buffer is used for both marshalling the token as well as for the RETRY
|
|
* packet. The size of buffer should not be less than
|
|
* MARSHALLED_TOKEN_MAX_LEN.
|
|
*/
|
|
unsigned char buffer[512];
|
|
unsigned char ct_buf[ENCRYPTED_TOKEN_MAX_LEN];
|
|
WPACKET wpkt;
|
|
size_t written, token_buf_len, ct_len;
|
|
QUIC_PKT_HDR hdr = {0};
|
|
QUIC_VALIDATION_TOKEN token = {0};
|
|
int ok;
|
|
|
|
if (!ossl_assert(sizeof(buffer) >= MARSHALLED_TOKEN_MAX_LEN))
|
|
return;
|
|
/*
|
|
* 17.2.5.1 Sending a Retry packet
|
|
* dst ConnId is src ConnId we got from client
|
|
* src ConnId comes from local conn ID manager
|
|
*/
|
|
memset(&hdr, 0, sizeof(QUIC_PKT_HDR));
|
|
hdr.dst_conn_id = client_hdr->src_conn_id;
|
|
/*
|
|
* this is the random connection ID, we expect client is
|
|
* going to send the ID with next INITIAL packet which
|
|
* will also come with token we generate here.
|
|
*/
|
|
ok = ossl_quic_lcidm_get_unused_cid(port->lcidm, &hdr.src_conn_id);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
memset(&token, 0, sizeof(QUIC_VALIDATION_TOKEN));
|
|
|
|
/* Generate retry validation token */
|
|
if (!generate_token(peer, client_hdr->dst_conn_id,
|
|
hdr.src_conn_id, &token, 1)
|
|
|| !marshal_validation_token(&token, buffer, &token_buf_len)
|
|
|| !encrypt_validation_token(port, buffer, token_buf_len, NULL,
|
|
&ct_len)
|
|
|| ct_len > ENCRYPTED_TOKEN_MAX_LEN
|
|
|| !encrypt_validation_token(port, buffer, token_buf_len, ct_buf,
|
|
&ct_len)
|
|
|| !ossl_assert(ct_len >= QUIC_RETRY_INTEGRITY_TAG_LEN))
|
|
goto err;
|
|
|
|
hdr.dst_conn_id = client_hdr->src_conn_id;
|
|
hdr.type = QUIC_PKT_TYPE_RETRY;
|
|
hdr.fixed = 1;
|
|
hdr.version = 1;
|
|
hdr.len = ct_len;
|
|
hdr.data = ct_buf;
|
|
ok = ossl_quic_calculate_retry_integrity_tag(port->engine->libctx,
|
|
port->engine->propq, &hdr,
|
|
&client_hdr->dst_conn_id,
|
|
ct_buf + ct_len
|
|
- QUIC_RETRY_INTEGRITY_TAG_LEN);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
hdr.token = hdr.data;
|
|
hdr.token_len = hdr.len;
|
|
|
|
msg[0].data = buffer;
|
|
msg[0].peer = peer;
|
|
msg[0].local = NULL;
|
|
msg[0].flags = 0;
|
|
|
|
ok = WPACKET_init_static_len(&wpkt, buffer, sizeof(buffer), 0);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
ok = ossl_quic_wire_encode_pkt_hdr(&wpkt, client_hdr->dst_conn_id.id_len,
|
|
&hdr, NULL);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
ok = WPACKET_get_total_written(&wpkt, &msg[0].data_len);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
ok = WPACKET_finish(&wpkt);
|
|
if (ok == 0)
|
|
goto err;
|
|
|
|
/*
|
|
* TODO(QUIC FUTURE) need to retry this in the event it return EAGAIN
|
|
* on a non-blocking BIO
|
|
*/
|
|
if (!BIO_sendmmsg(port->net_wbio, msg, sizeof(BIO_MSG), 1, 0, &written))
|
|
ERR_raise_data(ERR_LIB_SSL, SSL_R_QUIC_NETWORK_ERROR,
|
|
"port retry send failed due to network BIO I/O error");
|
|
|
|
err:
|
|
cleanup_validation_token(&token);
|
|
}
|
|
|
|
/**
|
|
* @brief Sends a QUIC Version Negotiation packet to the specified peer.
|
|
*
|
|
* This function constructs and sends a Version Negotiation packet using
|
|
* the connection IDs from the client's initial packet header. The
|
|
* Version Negotiation packet indicates support for QUIC version 1.
|
|
*
|
|
* @param port Pointer to the QUIC_PORT structure representing the port
|
|
* context used for network communication.
|
|
* @param peer Pointer to the BIO_ADDR structure specifying the address
|
|
* of the peer to which the Version Negotiation packet
|
|
* will be sent.
|
|
* @param client_hdr Pointer to the QUIC_PKT_HDR structure containing the
|
|
* client's packet header used to extract connection IDs.
|
|
*
|
|
* @note The function will raise an error if sending the message fails.
|
|
*/
|
|
static void port_send_version_negotiation(QUIC_PORT *port, BIO_ADDR *peer,
|
|
QUIC_PKT_HDR *client_hdr)
|
|
{
|
|
BIO_MSG msg[1];
|
|
unsigned char buffer[1024];
|
|
QUIC_PKT_HDR hdr;
|
|
WPACKET wpkt;
|
|
uint32_t supported_versions[1];
|
|
size_t written;
|
|
size_t i;
|
|
|
|
memset(&hdr, 0, sizeof(QUIC_PKT_HDR));
|
|
/*
|
|
* Reverse the source and dst conn ids
|
|
*/
|
|
hdr.dst_conn_id = client_hdr->src_conn_id;
|
|
hdr.src_conn_id = client_hdr->dst_conn_id;
|
|
|
|
/*
|
|
* This is our list of supported protocol versions
|
|
* Currently only QUIC_VERSION_1
|
|
*/
|
|
supported_versions[0] = QUIC_VERSION_1;
|
|
|
|
/*
|
|
* Fill out the header fields
|
|
* Note: Version negotiation packets, must, unlike
|
|
* other packet types have a version of 0
|
|
*/
|
|
hdr.type = QUIC_PKT_TYPE_VERSION_NEG;
|
|
hdr.version = 0;
|
|
hdr.token = 0;
|
|
hdr.token_len = 0;
|
|
hdr.len = sizeof(supported_versions);
|
|
hdr.data = (unsigned char *)supported_versions;
|
|
|
|
msg[0].data = buffer;
|
|
msg[0].peer = peer;
|
|
msg[0].local = NULL;
|
|
msg[0].flags = 0;
|
|
|
|
if (!WPACKET_init_static_len(&wpkt, buffer, sizeof(buffer), 0))
|
|
return;
|
|
|
|
if (!ossl_quic_wire_encode_pkt_hdr(&wpkt, client_hdr->dst_conn_id.id_len,
|
|
&hdr, NULL))
|
|
return;
|
|
|
|
/*
|
|
* Add the array of supported versions to the end of the packet
|
|
*/
|
|
for (i = 0; i < OSSL_NELEM(supported_versions); i++) {
|
|
if (!WPACKET_put_bytes_u32(&wpkt, htonl(supported_versions[i])))
|
|
return;
|
|
}
|
|
|
|
if (!WPACKET_get_total_written(&wpkt, &msg[0].data_len))
|
|
return;
|
|
|
|
if (!WPACKET_finish(&wpkt))
|
|
return;
|
|
|
|
/*
|
|
* Send it back to the client attempting to connect
|
|
* TODO(QUIC FUTURE): Need to handle the EAGAIN case here, if the
|
|
* BIO_sendmmsg call falls in a retryable manner
|
|
*/
|
|
if (!BIO_sendmmsg(port->net_wbio, msg, sizeof(BIO_MSG), 1, 0, &written))
|
|
ERR_raise_data(ERR_LIB_SSL, SSL_R_QUIC_NETWORK_ERROR,
|
|
"port version negotiation send failed");
|
|
}
|
|
|
|
/**
|
|
* @brief defintions of token lifetimes
|
|
*
|
|
* RETRY tokens are only valid for 10 seconds
|
|
* NEW_TOKEN tokens have a lifetime of 3600 sec (1 hour)
|
|
*/
|
|
|
|
#define RETRY_LIFETIME 10
|
|
#define NEW_TOKEN_LIFETIME 3600
|
|
/**
|
|
* @brief Validates a received token in a QUIC packet header.
|
|
*
|
|
* This function checks the validity of a token contained in the provided
|
|
* QUIC packet header (`QUIC_PKT_HDR *hdr`). The validation process involves
|
|
* verifying that the token matches an expected format and value. If the
|
|
* token is from a RETRY packet, the function extracts the original connection
|
|
* ID (ODCID)/original source connection ID (SCID) and stores it in the provided
|
|
* parameters. If the token is from a NEW_TOKEN packet, the values will be
|
|
* derived instead.
|
|
*
|
|
* @param hdr Pointer to the QUIC packet header containing the token.
|
|
* @param port Pointer to the QUIC port from which to send the packet.
|
|
* @param peer Address of the client peer receiving the packet.
|
|
* @param odcid Pointer to the connection ID structure to store the ODCID if the
|
|
* token is valid.
|
|
* @param scid Pointer to the connection ID structure to store the SCID if the
|
|
* token is valid.
|
|
*
|
|
* @return 1 if the token is valid and ODCID/SCID are successfully set.
|
|
* 0 otherwise.
|
|
*
|
|
* The function performs the following checks:
|
|
* - Token length meets the required minimum.
|
|
* - Buffer matches expected format.
|
|
* - Peer address matches previous connection address.
|
|
* - Token has not expired. Currently set to 10 seconds for tokens from RETRY
|
|
* packets and 60 minutes for tokens from NEW_TOKEN packets. This may be
|
|
* configurable in the future.
|
|
*/
|
|
static int port_validate_token(QUIC_PKT_HDR *hdr, QUIC_PORT *port,
|
|
BIO_ADDR *peer, QUIC_CONN_ID *odcid,
|
|
QUIC_CONN_ID *scid, uint8_t *gen_new_token)
|
|
{
|
|
int ret = 0;
|
|
QUIC_VALIDATION_TOKEN token = { 0 };
|
|
uint64_t time_diff;
|
|
size_t remote_addr_len, dec_token_len;
|
|
unsigned char *remote_addr = NULL, dec_token[MARSHALLED_TOKEN_MAX_LEN];
|
|
OSSL_TIME now = ossl_time_now();
|
|
|
|
*gen_new_token = 0;
|
|
|
|
if (!decrypt_validation_token(port, hdr->token, hdr->token_len, NULL,
|
|
&dec_token_len)
|
|
|| dec_token_len > MARSHALLED_TOKEN_MAX_LEN
|
|
|| !decrypt_validation_token(port, hdr->token, hdr->token_len,
|
|
dec_token, &dec_token_len)
|
|
|| !parse_validation_token(&token, dec_token, dec_token_len))
|
|
goto err;
|
|
|
|
/*
|
|
* Validate token timestamp. Current time should not be before the token
|
|
* timestamp.
|
|
*/
|
|
if (ossl_time_compare(now, token.timestamp) < 0)
|
|
goto err;
|
|
time_diff = ossl_time2seconds(ossl_time_abs_difference(token.timestamp,
|
|
now));
|
|
if ((token.is_retry && time_diff > RETRY_LIFETIME)
|
|
|| (!token.is_retry && time_diff > NEW_TOKEN_LIFETIME))
|
|
goto err;
|
|
|
|
/* Validate remote address */
|
|
if (!BIO_ADDR_rawaddress(peer, NULL, &remote_addr_len)
|
|
|| remote_addr_len != token.remote_addr_len
|
|
|| (remote_addr = OPENSSL_malloc(remote_addr_len)) == NULL
|
|
|| !BIO_ADDR_rawaddress(peer, remote_addr, &remote_addr_len)
|
|
|| memcmp(remote_addr, token.remote_addr, remote_addr_len) != 0)
|
|
goto err;
|
|
|
|
/*
|
|
* Set ODCID and SCID. If the token is from a RETRY packet, retrieve both
|
|
* from the token. Otherwise, generate a new ODCID and use the header's
|
|
* source connection ID for SCID.
|
|
*/
|
|
if (token.is_retry) {
|
|
/*
|
|
* We're parsing a packet header before its gone through AEAD validation
|
|
* here, so there is a chance we are dealing with corrupted data. Make
|
|
* Sure the dcid encoded in the token matches the headers dcid to
|
|
* mitigate that.
|
|
* TODO(QUIC FUTURE): Consider handling AEAD validation at the port
|
|
* level rather than the QRX/channel level to eliminate the need for
|
|
* this.
|
|
*/
|
|
if (token.rscid.id_len != hdr->dst_conn_id.id_len
|
|
|| memcmp(&token.rscid.id, &hdr->dst_conn_id.id,
|
|
token.rscid.id_len) != 0)
|
|
goto err;
|
|
*odcid = token.odcid;
|
|
*scid = token.rscid;
|
|
} else {
|
|
if (!ossl_quic_lcidm_get_unused_cid(port->lcidm, odcid))
|
|
goto err;
|
|
*scid = hdr->src_conn_id;
|
|
}
|
|
|
|
/*
|
|
* Determine if we need to send a NEW_TOKEN frame
|
|
* If we validated a retry token, we should always
|
|
* send a NEW_TOKEN frame to the client
|
|
*
|
|
* If however, we validated a NEW_TOKEN, which may be
|
|
* reused multiple times, only send a NEW_TOKEN frame
|
|
* if the existing received token has less than 10% of its lifetime
|
|
* remaining. This prevents us from constantly sending
|
|
* NEW_TOKEN frames on every connection when not needed
|
|
*/
|
|
if (token.is_retry) {
|
|
*gen_new_token = 1;
|
|
} else {
|
|
if (time_diff > ((NEW_TOKEN_LIFETIME * 9) / 10))
|
|
*gen_new_token = 1;
|
|
}
|
|
|
|
ret = 1;
|
|
err:
|
|
cleanup_validation_token(&token);
|
|
OPENSSL_free(remote_addr);
|
|
return ret;
|
|
}
|
|
|
|
static void generate_new_token(QUIC_CHANNEL *ch, BIO_ADDR *peer)
|
|
{
|
|
QUIC_CONN_ID rscid = { 0 };
|
|
QUIC_VALIDATION_TOKEN token;
|
|
unsigned char buffer[ENCRYPTED_TOKEN_MAX_LEN];
|
|
unsigned char *ct_buf;
|
|
size_t ct_len;
|
|
size_t token_buf_len = 0;
|
|
|
|
/* Clients never send a NEW_TOKEN */
|
|
if (!ch->is_server)
|
|
return;
|
|
|
|
ct_buf = OPENSSL_zalloc(ENCRYPTED_TOKEN_MAX_LEN);
|
|
if (ct_buf == NULL)
|
|
return;
|
|
|
|
/*
|
|
* NEW_TOKEN tokens may be used for multiple subsequent connections
|
|
* within their timeout period, so don't reserve an rscid here
|
|
* like we do for retry tokens, instead, just fill it with random
|
|
* data, as we won't use it anyway
|
|
*/
|
|
rscid.id_len = 8;
|
|
if (!RAND_bytes_ex(ch->port->engine->libctx, rscid.id, 8, 0)) {
|
|
OPENSSL_free(ct_buf);
|
|
return;
|
|
}
|
|
|
|
memset(&token, 0, sizeof(QUIC_VALIDATION_TOKEN));
|
|
|
|
if (!generate_token(peer, ch->init_dcid, rscid, &token, 0)
|
|
|| !marshal_validation_token(&token, buffer, &token_buf_len)
|
|
|| !encrypt_validation_token(ch->port, buffer, token_buf_len, NULL,
|
|
&ct_len)
|
|
|| ct_len > ENCRYPTED_TOKEN_MAX_LEN
|
|
|| !encrypt_validation_token(ch->port, buffer, token_buf_len, ct_buf,
|
|
&ct_len)
|
|
|| !ossl_assert(ct_len >= QUIC_RETRY_INTEGRITY_TAG_LEN)) {
|
|
OPENSSL_free(ct_buf);
|
|
cleanup_validation_token(&token);
|
|
return;
|
|
}
|
|
|
|
ch->pending_new_token = ct_buf;
|
|
ch->pending_new_token_len = ct_len;
|
|
|
|
cleanup_validation_token(&token);
|
|
}
|
|
|
|
/*
|
|
* This is called by the demux when we get a packet not destined for any known
|
|
* DCID.
|
|
*/
|
|
static void port_default_packet_handler(QUIC_URXE *e, void *arg,
|
|
const QUIC_CONN_ID *dcid)
|
|
{
|
|
QUIC_PORT *port = arg;
|
|
PACKET pkt;
|
|
QUIC_PKT_HDR hdr;
|
|
QUIC_CHANNEL *ch = NULL, *new_ch = NULL;
|
|
QUIC_CONN_ID odcid, scid;
|
|
uint8_t gen_new_token = 0;
|
|
OSSL_QRX *qrx = NULL;
|
|
OSSL_QRX *qrx_src = NULL;
|
|
OSSL_QRX_ARGS qrx_args = {0};
|
|
uint64_t cause_flags = 0;
|
|
OSSL_QRX_PKT *qrx_pkt = NULL;
|
|
|
|
/* Don't handle anything if we are no longer running. */
|
|
if (!ossl_quic_port_is_running(port))
|
|
goto undesirable;
|
|
|
|
if (port_try_handle_stateless_reset(port, e))
|
|
goto undesirable;
|
|
|
|
if (dcid != NULL
|
|
&& ossl_quic_lcidm_lookup(port->lcidm, dcid, NULL,
|
|
(void **)&ch)) {
|
|
assert(ch != NULL);
|
|
ossl_quic_channel_inject(ch, e);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we have an incoming packet which doesn't match any existing connection
|
|
* we assume this is an attempt to make a new connection.
|
|
*/
|
|
if (!port->allow_incoming)
|
|
goto undesirable;
|
|
|
|
/*
|
|
* We have got a packet for an unknown DCID. This might be an attempt to
|
|
* open a new connection.
|
|
*/
|
|
if (e->data_len < QUIC_MIN_INITIAL_DGRAM_LEN)
|
|
goto undesirable;
|
|
|
|
if (!PACKET_buf_init(&pkt, ossl_quic_urxe_data(e), e->data_len))
|
|
goto undesirable;
|
|
|
|
/*
|
|
* We set short_conn_id_len to SIZE_MAX here which will cause the decode
|
|
* operation to fail if we get a 1-RTT packet. This is fine since we only
|
|
* care about Initial packets.
|
|
*/
|
|
if (!ossl_quic_wire_decode_pkt_hdr(&pkt, SIZE_MAX, 1, 0, &hdr, NULL,
|
|
&cause_flags)) {
|
|
/*
|
|
* If we fail due to a bad version, we know the packet up to the version
|
|
* number was decoded, and we use it below to send a version
|
|
* negotiation packet
|
|
*/
|
|
if ((cause_flags & QUIC_PKT_HDR_DECODE_BAD_VERSION) == 0)
|
|
goto undesirable;
|
|
}
|
|
|
|
switch (hdr.version) {
|
|
case QUIC_VERSION_1:
|
|
break;
|
|
|
|
case QUIC_VERSION_NONE:
|
|
default:
|
|
|
|
/*
|
|
* If we get here, then we have a bogus version, and might need
|
|
* to send a version negotiation packet. According to
|
|
* RFC 9000 s. 6 and 14.1, we only do so however, if the UDP datagram
|
|
* is a minimum of 1200 bytes in size
|
|
*/
|
|
if (e->data_len < 1200)
|
|
goto undesirable;
|
|
|
|
/*
|
|
* If we don't get a supported version, respond with a ver
|
|
* negotiation packet, and discard
|
|
* TODO(QUIC FUTURE): Rate limit the reception of these
|
|
*/
|
|
port_send_version_negotiation(port, &e->peer, &hdr);
|
|
goto undesirable;
|
|
}
|
|
|
|
/*
|
|
* We only care about Initial packets which might be trying to establish a
|
|
* connection.
|
|
*/
|
|
if (hdr.type != QUIC_PKT_TYPE_INITIAL)
|
|
goto undesirable;
|
|
|
|
odcid.id_len = 0;
|
|
|
|
/*
|
|
* Create qrx now so we can check integrity of packet
|
|
* which does not belong to any channel.
|
|
*/
|
|
qrx_args.libctx = port->engine->libctx;
|
|
qrx_args.demux = port->demux;
|
|
qrx_args.short_conn_id_len = dcid->id_len;
|
|
qrx_args.max_deferred = 32;
|
|
qrx = ossl_qrx_new(&qrx_args);
|
|
if (qrx == NULL)
|
|
goto undesirable;
|
|
|
|
/*
|
|
* Derive secrets for qrx only.
|
|
*/
|
|
if (!ossl_quic_provide_initial_secret(port->engine->libctx,
|
|
port->engine->propq,
|
|
&hdr.dst_conn_id,
|
|
/* is_server */ 1,
|
|
qrx, NULL))
|
|
goto undesirable;
|
|
|
|
if (ossl_qrx_validate_initial_packet(qrx, e, (const QUIC_CONN_ID *)dcid) == 0)
|
|
goto undesirable;
|
|
|
|
if (port->validate_addr == 0) {
|
|
/*
|
|
* Forget qrx, because it becomes (almost) useless here. We must let
|
|
* channel to create a new QRX for connection ID server chooses. The
|
|
* validation keys for new DCID will be derived by
|
|
* ossl_quic_channel_on_new_conn() when we will be creating channel.
|
|
* See RFC 9000 section 7.2 negotiating connection id to better
|
|
* understand what's going on here.
|
|
*
|
|
* Did we say qrx is almost useless? Why? Because qrx remembers packets
|
|
* we just validated. Those packets must be injected to channel we are
|
|
* going to create. We use qrx_src alias so we can read packets from
|
|
* qrx and inject them to channel.
|
|
*/
|
|
qrx_src = qrx;
|
|
qrx = NULL;
|
|
}
|
|
/*
|
|
* TODO(QUIC FUTURE): there should be some logic similar to accounting half-open
|
|
* states in TCP. If we reach certain threshold, then we want to
|
|
* validate clients.
|
|
*/
|
|
if (port->validate_addr == 1 && hdr.token == NULL) {
|
|
port_send_retry(port, &e->peer, &hdr);
|
|
goto undesirable;
|
|
}
|
|
|
|
/*
|
|
* Note, even if we don't enforce the sending of retry frames for
|
|
* server address validation, we may still get a token if we sent
|
|
* a NEW_TOKEN frame during a prior connection, which we should still
|
|
* validate here
|
|
*/
|
|
if (hdr.token != NULL
|
|
&& port_validate_token(&hdr, port, &e->peer,
|
|
&odcid, &scid,
|
|
&gen_new_token) == 0) {
|
|
/*
|
|
* RFC 9000 s 8.1.3
|
|
* When a server receives an Initial packet with an address
|
|
* validation token, it MUST attempt to validate the token,
|
|
* unless it has already completed address validation.
|
|
* If the token is invalid, then the server SHOULD proceed as
|
|
* if the client did not have a validated address,
|
|
* including potentially sending a Retry packet
|
|
* Note: If address validation is disabled, just act like
|
|
* the request is valid
|
|
*/
|
|
if (port->validate_addr == 1) {
|
|
/*
|
|
* Again: we should consider saving initial encryption level
|
|
* secrets to token here to save some CPU cycles.
|
|
*/
|
|
port_send_retry(port, &e->peer, &hdr);
|
|
goto undesirable;
|
|
}
|
|
|
|
/*
|
|
* client is under amplification limit, until it completes
|
|
* handshake.
|
|
*
|
|
* forget qrx so channel can create a new one
|
|
* with valid initial encryption level keys.
|
|
*/
|
|
qrx_src = qrx;
|
|
qrx = NULL;
|
|
}
|
|
|
|
port_bind_channel(port, &e->peer, &scid, &hdr.dst_conn_id,
|
|
&odcid, qrx, &new_ch);
|
|
|
|
/*
|
|
* if packet validates it gets moved to channel, we've just bound
|
|
* to port.
|
|
*/
|
|
if (new_ch == NULL)
|
|
goto undesirable;
|
|
|
|
/*
|
|
* Generate a token for sending in a later NEW_TOKEN frame
|
|
*/
|
|
if (gen_new_token == 1)
|
|
generate_new_token(new_ch, &e->peer);
|
|
|
|
if (qrx != NULL) {
|
|
/*
|
|
* The qrx belongs to channel now, so don't free it.
|
|
*/
|
|
qrx = NULL;
|
|
} else {
|
|
/*
|
|
* We still need to salvage packets from almost forgotten qrx
|
|
* and pass them to channel.
|
|
*/
|
|
while (ossl_qrx_read_pkt(qrx_src, &qrx_pkt) == 1)
|
|
ossl_quic_channel_inject_pkt(new_ch, qrx_pkt);
|
|
}
|
|
|
|
/*
|
|
* If function reaches this place, then packet got validated in
|
|
* ossl_qrx_validate_initial_packet(). Keep in mind the function
|
|
* ossl_qrx_validate_initial_packet() decrypts the packet to validate it.
|
|
* If packet validation was successful (and it was because we are here),
|
|
* then the function puts the packet to qrx->rx_pending. We must not call
|
|
* ossl_qrx_inject_urxe() here now, because we don't want to insert
|
|
* the packet to qrx->urx_pending which keeps packet waiting for decryption.
|
|
*
|
|
* We are going to call ossl_quic_demux_release_urxe() to dispose buffer
|
|
* which still holds encrypted data.
|
|
*/
|
|
|
|
undesirable:
|
|
ossl_qrx_free(qrx);
|
|
ossl_qrx_free(qrx_src);
|
|
ossl_quic_demux_release_urxe(port->demux, e);
|
|
}
|
|
|
|
void ossl_quic_port_raise_net_error(QUIC_PORT *port,
|
|
QUIC_CHANNEL *triggering_ch)
|
|
{
|
|
QUIC_CHANNEL *ch;
|
|
|
|
if (!ossl_quic_port_is_running(port))
|
|
return;
|
|
|
|
/*
|
|
* Immediately capture any triggering error on the error stack, with a
|
|
* cover error.
|
|
*/
|
|
ERR_raise_data(ERR_LIB_SSL, SSL_R_QUIC_NETWORK_ERROR,
|
|
"port failed due to network BIO I/O error");
|
|
OSSL_ERR_STATE_save(port->err_state);
|
|
|
|
port_transition_failed(port);
|
|
|
|
/* Give the triggering channel (if any) the first notification. */
|
|
if (triggering_ch != NULL)
|
|
ossl_quic_channel_raise_net_error(triggering_ch);
|
|
|
|
OSSL_LIST_FOREACH(ch, ch, &port->channel_list)
|
|
if (ch != triggering_ch)
|
|
ossl_quic_channel_raise_net_error(ch);
|
|
}
|
|
|
|
void ossl_quic_port_restore_err_state(const QUIC_PORT *port)
|
|
{
|
|
ERR_clear_error();
|
|
OSSL_ERR_STATE_restore(port->err_state);
|
|
}
|