Reviewed-by: Viktor Dukhovni <viktor@openssl.org> Reviewed-by: Tim Hudson <tjh@openssl.org> (Merged from https://github.com/openssl/openssl/pull/26657)
670 lines
21 KiB
C
670 lines
21 KiB
C
/*
|
|
* Copyright 2025 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
* https://www.openssl.org/source/license.html
|
|
* or in the file LICENSE in the source distribution.
|
|
*/
|
|
|
|
/*
|
|
* Test ml-kem operation.
|
|
*/
|
|
#include <string.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/byteorder.h>
|
|
#include <openssl/ml_kem.h>
|
|
#include "internal/nelem.h"
|
|
#include "fuzzer.h"
|
|
|
|
/**
|
|
* @brief Consumes an 8-bit unsigned integer from a buffer.
|
|
*
|
|
* This function extracts an 8-bit unsigned integer from the provided buffer,
|
|
* updates the buffer pointer, and adjusts the remaining length.
|
|
*
|
|
* @param buf Pointer to the input buffer.
|
|
* @param len Pointer to the size of the remaining buffer; updated after consumption.
|
|
* @param val Pointer to store the extracted 8-bit value.
|
|
*
|
|
* @return Pointer to the updated buffer position after reading the value,
|
|
* or NULL if the buffer does not contain enough data.
|
|
*/
|
|
static uint8_t *consume_uint8t(const uint8_t *buf, size_t *len, uint8_t *val)
|
|
{
|
|
if (*len < sizeof(uint8_t))
|
|
return NULL;
|
|
*val = *buf;
|
|
*len -= sizeof(uint8_t);
|
|
return (uint8_t *)buf + 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Selects a key type and size from a buffer.
|
|
*
|
|
* This function reads a key size value from the buffer, determines the
|
|
* corresponding key type and length, and updates the buffer pointer
|
|
* accordingly. If `only_valid` is set, it restricts selection to valid
|
|
* key sizes; otherwise, it includes some invalid sizes for testing.
|
|
*
|
|
* @param buf Pointer to the buffer pointer; updated after reading.
|
|
* @param len Pointer to the remaining buffer size; updated accordingly.
|
|
* @param keytype Pointer to store the selected key type string.
|
|
* @param keylen Pointer to store the selected key length.
|
|
* @param only_valid Flag to restrict selection to valid key sizes.
|
|
*
|
|
* @return 1 if a key type is successfully selected, 0 on failure.
|
|
*/
|
|
static int select_keytype_and_size(uint8_t **buf, size_t *len,
|
|
char **keytype, size_t *keylen,
|
|
int only_valid)
|
|
{
|
|
uint16_t keysize;
|
|
uint16_t modulus = 6;
|
|
|
|
/*
|
|
* Note: We don't really care about endianess here, we just
|
|
* want a random 16 bit value
|
|
*/
|
|
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
|
|
*len -= sizeof(uint16_t);
|
|
|
|
if (*buf == NULL)
|
|
return 0;
|
|
|
|
/*
|
|
* select from sizes
|
|
* ML-KEM-512, ML-KEM-768, and ML-KEM-1024
|
|
* also select some invalid sizes to trigger
|
|
* error paths
|
|
*/
|
|
if (only_valid)
|
|
modulus = 3;
|
|
|
|
/*
|
|
* Note, keylens for valid values (cases 0-2)
|
|
* are taken based on input values from our unit tests
|
|
*/
|
|
switch (keysize % modulus) {
|
|
case 0:
|
|
*keytype = "ML-KEM-512";
|
|
*keylen = OSSL_ML_KEM_512_PUBLIC_KEY_BYTES;
|
|
break;
|
|
case 1:
|
|
*keytype = "ML-KEM-768";
|
|
*keylen = OSSL_ML_KEM_768_PUBLIC_KEY_BYTES;
|
|
break;
|
|
case 2:
|
|
*keytype = "ML-KEM-1024";
|
|
*keylen = OSSL_ML_KEM_1024_PUBLIC_KEY_BYTES;
|
|
break;
|
|
case 3:
|
|
/* select invalid alg */
|
|
*keytype = "ML-KEM-13";
|
|
*keylen = 13;
|
|
break;
|
|
case 4:
|
|
/* Select valid alg, but bogus size */
|
|
*keytype = "ML-KEM-1024";
|
|
*buf = (uint8_t *)OPENSSL_load_u16_le(&keysize, *buf);
|
|
*len -= sizeof(uint16_t);
|
|
*keylen = (size_t)keysize;
|
|
*keylen %= 1024; /* size to our key buffer */
|
|
break;
|
|
default:
|
|
*keytype = NULL;
|
|
*keylen = 0;
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* @brief Creates an ML-KEM raw key from a buffer.
|
|
*
|
|
* This function selects a key type and size from the buffer, generates
|
|
* a random key of the appropriate length, and creates either a public
|
|
* or private ML-KEM key using OpenSSL's EVP_PKEY interface.
|
|
*
|
|
* @param buf Pointer to the buffer pointer; updated after reading.
|
|
* @param len Pointer to the remaining buffer size; updated accordingly.
|
|
* @param key1 Pointer to store the generated EVP_PKEY key (public or private).
|
|
* @param key2 Unused parameter (reserved for future use).
|
|
*
|
|
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
|
|
* and should be freed appropriately using `EVP_PKEY_free()`.
|
|
*/
|
|
static void create_mlkem_raw_key(uint8_t **buf, size_t *len,
|
|
void **key1, void **key2)
|
|
{
|
|
EVP_PKEY *pubkey;
|
|
char *keytype = NULL;
|
|
size_t keylen = 0;
|
|
uint8_t key[4096];
|
|
int pub = 0;
|
|
|
|
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 0))
|
|
return;
|
|
|
|
/*
|
|
* Select public or private key creation based on the low order
|
|
* bit of the next buffer value
|
|
* Note that keylen as returned from select_keytype_and_size is
|
|
* a public key length, private keys for ML-KEM are always double
|
|
* the size plus 32, so make that adjustment here
|
|
*/
|
|
if ((*buf)[0] & 0x1)
|
|
pub = 1;
|
|
else
|
|
keylen = (keylen * 2) + 32;
|
|
|
|
/*
|
|
* libfuzzer provides by default up to 4096 bit input
|
|
* buffers, but its typically much less (between 1 and 100 bytes)
|
|
* so use RAND_bytes here instead
|
|
*/
|
|
if (!RAND_bytes(key, keylen))
|
|
return;
|
|
|
|
/*
|
|
* Try to generate either a raw public or private key using random data
|
|
* Because the input is completely random, its effectively certain this
|
|
* operation will fail, but it will still exercise the code paths below,
|
|
* which is what we want the fuzzer to do
|
|
*/
|
|
if (pub == 1)
|
|
pubkey = EVP_PKEY_new_raw_public_key_ex(NULL, keytype, NULL, key, keylen);
|
|
else
|
|
pubkey = EVP_PKEY_new_raw_private_key_ex(NULL, keytype, NULL, key, keylen);
|
|
|
|
*key1 = pubkey;
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief Generates a valid ML-KEM key using OpenSSL.
|
|
*
|
|
* This function selects a valid ML-KEM key type and size from the buffer,
|
|
* initializes an OpenSSL EVP_PKEY context, and generates a cryptographic
|
|
* key accordingly.
|
|
*
|
|
* @param buf Pointer to the buffer pointer; updated after reading.
|
|
* @param len Pointer to the remaining buffer size; updated accordingly.
|
|
* @param key1 Pointer to store the generated EVP_PKEY key.
|
|
* @param unused Unused parameter (reserved for future use).
|
|
*
|
|
* @note The generated key is allocated using OpenSSL's EVP_PKEY functions
|
|
* and should be freed using `EVP_PKEY_free()`.
|
|
*/
|
|
static void keygen_mlkem_real_key(uint8_t **buf, size_t *len,
|
|
void **key1, void **key2)
|
|
{
|
|
char *keytype = NULL;
|
|
size_t keylen = 0;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
EVP_PKEY **key;
|
|
|
|
*key1 = *key2 = NULL;
|
|
|
|
key = (EVP_PKEY **)key1;
|
|
|
|
again:
|
|
/*
|
|
* Only generate valid key types and lengths
|
|
* Note, no adjustment is made to keylen here, as
|
|
* the provider is responsible for selecting the keys and sizes
|
|
* for us during the EVP_PKEY_keygen call
|
|
*/
|
|
if (!select_keytype_and_size(buf, len, &keytype, &keylen, 1))
|
|
return;
|
|
|
|
ctx = EVP_PKEY_CTX_new_from_name(NULL, keytype, NULL);
|
|
if (!ctx) {
|
|
fprintf(stderr, "Failed to generate ctx\n");
|
|
return;
|
|
}
|
|
|
|
if (!EVP_PKEY_keygen_init(ctx)) {
|
|
fprintf(stderr, "Failed to init keygen ctx\n");
|
|
goto err;
|
|
}
|
|
|
|
*key = EVP_PKEY_new();
|
|
if (*key == NULL)
|
|
goto err;
|
|
|
|
if (!EVP_PKEY_generate(ctx, key)) {
|
|
fprintf(stderr, "Failed to generate new real key\n");
|
|
goto err;
|
|
}
|
|
|
|
if (key == (EVP_PKEY **)key1) {
|
|
EVP_PKEY_CTX_free(ctx);
|
|
key = (EVP_PKEY **)key2;
|
|
goto again;
|
|
}
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief Performs key encapsulation and decapsulation using an EVP_PKEY.
|
|
*
|
|
* This function generates a random key, encapsulates it using the provided
|
|
* public key, then decapsulates it to retrieve the original key. It makes
|
|
* use of OpenSSL's EVP_PKEY API for encryption and decryption.
|
|
*
|
|
* @param[out] buf Unused output buffer (reserved for future use).
|
|
* @param[out] len Unused length parameter (reserved for future use).
|
|
* @param[in] key1 Pointer to an EVP_PKEY structure used for key operations.
|
|
* @param[in] in2 Unused input parameter (reserved for future use).
|
|
* @param[out] out1 Unused output parameter (reserved for future use).
|
|
* @param[out] out2 Unused output parameter (reserved for future use).
|
|
*/
|
|
static void mlkem_encap_decap(uint8_t **buf, size_t *len, void *key1, void *in2,
|
|
void **out1, void **out2)
|
|
{
|
|
EVP_PKEY *key = (EVP_PKEY *)key1;
|
|
EVP_PKEY_CTX *ctx;
|
|
unsigned char genkey[32];
|
|
size_t genkey_len = 32;
|
|
unsigned char unwrappedkey[32];
|
|
size_t unwrappedkey_len = 32;
|
|
unsigned char wrapkey[1568];
|
|
size_t wrapkey_len = 1568;
|
|
|
|
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "Failed to allocate ctx\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_encapsulate_init(ctx, NULL)) {
|
|
fprintf(stderr, "Failed to init encap context\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!RAND_bytes(genkey, genkey_len))
|
|
goto err;
|
|
|
|
if (EVP_PKEY_encapsulate(ctx, wrapkey, &wrapkey_len, genkey, &genkey_len) <= 0) {
|
|
fprintf(stderr, "Failed to encapsulate key\n");
|
|
goto err;
|
|
}
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "Failed to create context\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_decapsulate_init(ctx, NULL)) {
|
|
fprintf(stderr, "Failed to init decap\n");
|
|
goto err;
|
|
}
|
|
|
|
if (EVP_PKEY_decapsulate(ctx, unwrappedkey, &unwrappedkey_len,
|
|
wrapkey, wrapkey_len) <= 0) {
|
|
fprintf(stderr, "Failed to decap key\n");
|
|
goto err;
|
|
}
|
|
|
|
if (memcmp(unwrappedkey, genkey, genkey_len))
|
|
fprintf(stderr, "mismatch on secret comparison\n");
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief Derives a shared secret using the provided key and peer key.
|
|
*
|
|
* This function performs a key derivation operation using the given
|
|
* private key and peer public key. The resulting shared secret is
|
|
* allocated dynamically and must be freed by the caller.
|
|
*
|
|
* @param[in] key The private key used for derivation.
|
|
* @param[in] peer The peer's public key.
|
|
* @param[out] shared Pointer to the derived shared secret (allocated).
|
|
* @param[out] shared_len Length of the derived shared secret.
|
|
*
|
|
* @note The caller is responsible for freeing the memory allocated
|
|
* for `shared` using `OPENSSL_free()`.
|
|
*/
|
|
static void do_derive(EVP_PKEY *key, EVP_PKEY *peer, uint8_t **shared, size_t *shared_len)
|
|
{
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
|
|
*shared = NULL;
|
|
*shared_len = 0;
|
|
|
|
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, key, NULL);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "failed to create keygen context\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_derive_init(ctx)) {
|
|
fprintf(stderr, "failed to init derive context\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_derive_set_peer(ctx, peer)) {
|
|
fprintf(stderr, "failed to set peer\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_derive(ctx, NULL, shared_len)) {
|
|
fprintf(stderr, "Derive failed 1\n");
|
|
goto err;
|
|
}
|
|
|
|
if (*shared_len == 0)
|
|
goto err;
|
|
|
|
*shared = OPENSSL_zalloc(*shared_len);
|
|
if (*shared == NULL) {
|
|
fprintf(stderr, "Failed to alloc\n");
|
|
goto err;
|
|
}
|
|
if (!EVP_PKEY_derive(ctx, *shared, shared_len)) {
|
|
fprintf(stderr, "Derive failed 2\n");
|
|
OPENSSL_free(*shared);
|
|
*shared = NULL;
|
|
*shared_len = 0;
|
|
goto err;
|
|
}
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
}
|
|
|
|
/**
|
|
* @brief Performs a key exchange using ML-KEM.
|
|
*
|
|
* This function derives shared secrets using the provided key pairs.
|
|
* It calls `do_derive()` to compute shared secrets for both participants
|
|
* and frees the allocated memory for the shared secrets.
|
|
*
|
|
* @param[out] buf Unused output buffer (reserved for future use).
|
|
* @param[out] len Unused output length (reserved for future use).
|
|
* @param[in] key1 First key (typically Alice's key).
|
|
* @param[in] key2 Second key (typically Bob's key).
|
|
* @param[out] out1 Unused output parameter (reserved for future use).
|
|
* @param[out] out2 Unused output parameter (reserved for future use).
|
|
*
|
|
* @note Currently, this function does not validate whether the derived
|
|
* shared secrets match. A check should be added when ML-KEM
|
|
* supports this.
|
|
*/
|
|
static void mlkem_kex(uint8_t **buf, size_t *len, void *key1, void *key2,
|
|
void **out1, void **out2)
|
|
{
|
|
EVP_PKEY *alice = (EVP_PKEY *)key1;
|
|
EVP_PKEY *bob = (EVP_PKEY *)key2;
|
|
size_t boblen, alicelen;
|
|
uint8_t *bobshare = NULL;
|
|
uint8_t *aliceshare = NULL;
|
|
|
|
do_derive(alice, bob, &aliceshare, &alicelen);
|
|
do_derive(bob, alice, &bobshare, &boblen);
|
|
|
|
/*
|
|
* TODO add check of shared secrets here when ML-KEM supports this
|
|
*/
|
|
OPENSSL_free(bobshare);
|
|
OPENSSL_free(aliceshare);
|
|
}
|
|
|
|
/**
|
|
* @brief Exports and imports an ML-KEM key.
|
|
*
|
|
* This function extracts key material from the given key (`key1`),
|
|
* exports it as parameters, and then attempts to reconstruct a new
|
|
* key from those parameters. It uses OpenSSL's `EVP_PKEY_todata()`
|
|
* and `EVP_PKEY_fromdata()` functions for this process.
|
|
*
|
|
* @param[out] buf Unused output buffer (reserved for future use).
|
|
* @param[out] len Unused output length (reserved for future use).
|
|
* @param[in] key1 The key to be exported and imported.
|
|
* @param[in] key2 Unused input key (reserved for future use).
|
|
* @param[out] out1 Unused output parameter (reserved for future use).
|
|
* @param[out] out2 Unused output parameter (reserved for future use).
|
|
*
|
|
* @note If any step in the export-import process fails, the function
|
|
* logs an error and cleans up allocated resources.
|
|
*/
|
|
static void mlkem_export_import(uint8_t **buf, size_t *len, void *key1,
|
|
void *key2, void **out1, void **out2)
|
|
{
|
|
EVP_PKEY *alice = (EVP_PKEY *)key1;
|
|
EVP_PKEY *new = NULL;
|
|
EVP_PKEY_CTX *ctx = NULL;
|
|
OSSL_PARAM *params = NULL;
|
|
|
|
if (!EVP_PKEY_todata(alice, EVP_PKEY_KEYPAIR, ¶ms)) {
|
|
fprintf(stderr, "Failed todata\n");
|
|
goto err;
|
|
}
|
|
|
|
ctx = EVP_PKEY_CTX_new_from_pkey(NULL, alice, NULL);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "Failed new ctx\n");
|
|
goto err;
|
|
}
|
|
|
|
if (!EVP_PKEY_fromdata(ctx, &new, EVP_PKEY_KEYPAIR, params)) {
|
|
fprintf(stderr, "Failed fromdata\n");
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
EVP_PKEY_free(new);
|
|
OSSL_PARAM_free(params);
|
|
}
|
|
|
|
/**
|
|
* @brief Compares two cryptographic keys and performs equality checks.
|
|
*
|
|
* This function takes in two cryptographic keys, casts them to `EVP_PKEY`
|
|
* structures, and checks their equality using `EVP_PKEY_eq()`. The purpose
|
|
* of `buf`, `len`, `out1`, and `out2` parameters is not clear from the
|
|
* function's current implementation.
|
|
*
|
|
* @param buf Unused parameter (purpose unclear).
|
|
* @param len Unused parameter (purpose unclear).
|
|
* @param key1 First key, expected to be an `EVP_PKEY *`.
|
|
* @param key2 Second key, expected to be an `EVP_PKEY *`.
|
|
* @param out1 Unused parameter (purpose unclear).
|
|
* @param out2 Unused parameter (purpose unclear).
|
|
*/
|
|
static void mlkem_compare(uint8_t **buf, size_t *len, void *key1,
|
|
void *key2, void **out1, void **out2)
|
|
{
|
|
EVP_PKEY *alice = (EVP_PKEY *)key1;
|
|
EVP_PKEY *bob = (EVP_PKEY *)key2;
|
|
|
|
EVP_PKEY_eq(alice, alice);
|
|
EVP_PKEY_eq(alice, bob);
|
|
}
|
|
|
|
/**
|
|
* @brief Frees allocated ML-KEM keys.
|
|
*
|
|
* This function releases memory associated with up to four EVP_PKEY
|
|
* objects by calling `EVP_PKEY_free()` on each provided key.
|
|
*
|
|
* @param key1 Pointer to the first key to be freed.
|
|
* @param key2 Pointer to the second key to be freed.
|
|
* @param key3 Pointer to the third key to be freed.
|
|
* @param key4 Pointer to the fourth key to be freed.
|
|
*
|
|
* @note This function assumes that each key is either a valid EVP_PKEY
|
|
* object or NULL. Passing NULL is safe and has no effect.
|
|
*/
|
|
static void cleanup_mlkem_keys(void *key1, void *key2,
|
|
void *key3, void *key4)
|
|
{
|
|
EVP_PKEY_free((EVP_PKEY *)key1);
|
|
EVP_PKEY_free((EVP_PKEY *)key2);
|
|
EVP_PKEY_free((EVP_PKEY *)key3);
|
|
EVP_PKEY_free((EVP_PKEY *)key4);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* @brief Represents an operation table entry for cryptographic operations.
|
|
*
|
|
* This structure defines a table entry containing function pointers for
|
|
* setting up, executing, and cleaning up cryptographic operations, along
|
|
* with associated metadata such as a name and description.
|
|
*
|
|
* @struct op_table_entry
|
|
*/
|
|
struct op_table_entry {
|
|
/** Name of the operation. */
|
|
char *name;
|
|
|
|
/** Description of the operation. */
|
|
char *desc;
|
|
|
|
/**
|
|
* @brief Function pointer for setting up the operation.
|
|
*
|
|
* @param buf Pointer to the buffer pointer; may be updated.
|
|
* @param len Pointer to the remaining buffer size; may be updated.
|
|
* @param out1 Pointer to store the first output of the setup function.
|
|
* @param out2 Pointer to store the second output of the setup function.
|
|
*/
|
|
void (*setup)(uint8_t **buf, size_t *len, void **out1, void **out2);
|
|
|
|
/**
|
|
* @brief Function pointer for executing the operation.
|
|
*
|
|
* @param buf Pointer to the buffer pointer; may be updated.
|
|
* @param len Pointer to the remaining buffer size; may be updated.
|
|
* @param in1 First input parameter for the operation.
|
|
* @param in2 Second input parameter for the operation.
|
|
* @param out1 Pointer to store the first output of the operation.
|
|
* @param out2 Pointer to store the second output of the operation.
|
|
*/
|
|
void (*doit)(uint8_t **buf, size_t *len, void *in1, void *in2,
|
|
void **out1, void **out2);
|
|
|
|
/**
|
|
* @brief Function pointer for cleaning up after the operation.
|
|
*
|
|
* @param in1 First input parameter to be cleaned up.
|
|
* @param in2 Second input parameter to be cleaned up.
|
|
* @param out1 First output parameter to be cleaned up.
|
|
* @param out2 Second output parameter to be cleaned up.
|
|
*/
|
|
void (*cleanup)(void *in1, void *in2, void *out1, void *out2);
|
|
};
|
|
|
|
static struct op_table_entry ops[] = {
|
|
{
|
|
"Generate ML-KEM raw key",
|
|
"Try generate a raw keypair using random data. Usually fails",
|
|
create_mlkem_raw_key,
|
|
NULL,
|
|
cleanup_mlkem_keys
|
|
}, {
|
|
"Generate ML-KEM keypair, using EVP_PKEY_keygen",
|
|
"Generates a real ML-KEM keypair, should always work",
|
|
keygen_mlkem_real_key,
|
|
NULL,
|
|
cleanup_mlkem_keys
|
|
}, {
|
|
"Do a key encap/decap operation on a key",
|
|
"Generate key, encap it, decap it and compare, should work",
|
|
keygen_mlkem_real_key,
|
|
mlkem_encap_decap,
|
|
cleanup_mlkem_keys
|
|
}, {
|
|
"Do a key exchange operation on two keys",
|
|
"Gen keys, do a key exchange both ways and compare",
|
|
keygen_mlkem_real_key,
|
|
mlkem_kex,
|
|
cleanup_mlkem_keys
|
|
}, {
|
|
"Do an export/import of key data",
|
|
"Exercise EVP_PKEY_todata/fromdata",
|
|
keygen_mlkem_real_key,
|
|
mlkem_export_import,
|
|
cleanup_mlkem_keys
|
|
}, {
|
|
"Compare keys for equality",
|
|
"Compare key1/key1 and key1/key2 for equality",
|
|
keygen_mlkem_real_key,
|
|
mlkem_compare,
|
|
cleanup_mlkem_keys
|
|
}
|
|
};
|
|
|
|
int FuzzerInitialize(int *argc, char ***argv)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Processes a fuzzing input by selecting and executing an operation.
|
|
*
|
|
* This function interprets the first byte of the input buffer to determine
|
|
* an operation to execute. It then follows a setup, execution, and cleanup
|
|
* sequence based on the selected operation.
|
|
*
|
|
* @param buf Pointer to the input buffer.
|
|
* @param len Length of the input buffer.
|
|
*
|
|
* @return 0 on successful execution, -1 if the input is too short.
|
|
*
|
|
* @note The function requires at least 32 bytes in the buffer to proceed.
|
|
* It utilizes the `ops` operation table to dynamically determine and
|
|
* execute the selected operation.
|
|
*/
|
|
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
|
|
{
|
|
uint8_t operation;
|
|
uint8_t *buffer_cursor;
|
|
void *in1 = NULL, *in2 = NULL;
|
|
void *out1 = NULL, *out2 = NULL;
|
|
|
|
if (len < 32)
|
|
return -1;
|
|
/*
|
|
* Get the first byte of the buffer to tell us what operation
|
|
* to preform
|
|
*/
|
|
buffer_cursor = consume_uint8t(buf, &len, &operation);
|
|
if (buffer_cursor == NULL)
|
|
return -1;
|
|
|
|
/*
|
|
* Adjust for operational array size
|
|
*/
|
|
operation %= OSSL_NELEM(ops);
|
|
|
|
/*
|
|
* And run our setup/doit/cleanup sequence
|
|
*/
|
|
if (ops[operation].setup != NULL)
|
|
ops[operation].setup(&buffer_cursor, &len, &in1, &in2);
|
|
if (ops[operation].doit != NULL)
|
|
ops[operation].doit(&buffer_cursor, &len, in1, in2, &out1, &out2);
|
|
if (ops[operation].cleanup != NULL)
|
|
ops[operation].cleanup(in1, in2, out1, out2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void FuzzerCleanup(void)
|
|
{
|
|
OPENSSL_cleanup();
|
|
}
|