openssl/crypto/ml_dsa/ml_dsa_local.h
openssl-machine 0c679f5566 Copyright year updates
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Release: yes
2025-03-12 13:35:59 +00:00

161 lines
6.5 KiB
C

/*
* Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OSSL_CRYPTO_ML_DSA_LOCAL_H
# define OSSL_CRYPTO_ML_DSA_LOCAL_H
# include "crypto/ml_dsa.h"
# include "internal/constant_time.h"
# include "internal/packet.h"
/* The following constants are shared by ML-DSA-44, ML-DSA-65 & ML-DSA-87 */
# define ML_DSA_Q 8380417 /* The modulus is 23 bits (2^23 - 2^13 + 1) */
# define ML_DSA_Q_MINUS1_DIV2 ((ML_DSA_Q - 1) / 2)
# define ML_DSA_Q_BITS 23
# define ML_DSA_Q_INV 58728449 /* q^-1 satisfies: q^-1 * q = 1 mod 2^32 */
# define ML_DSA_Q_NEG_INV 4236238847 /* Inverse of -q modulo 2^32 */
# define ML_DSA_DEGREE_INV_MONTGOMERY 41978 /* Inverse of 256 mod q, in Montgomery form. */
# define ML_DSA_D_BITS 13 /* The number of bits dropped from the public vector t */
# define ML_DSA_NUM_POLY_COEFFICIENTS 256 /* The number of coefficients in the polynomials */
# define ML_DSA_RHO_BYTES 32 /* p = Public Random Seed */
# define ML_DSA_PRIV_SEED_BYTES 64 /* p' = Private random seed */
# define ML_DSA_K_BYTES 32 /* K = Private random seed for signing */
# define ML_DSA_TR_BYTES 64 /* Size of the Hash of the public key used for signing */
# define ML_DSA_MU_BYTES 64 /* Size of the Hash for the message representative */
# define ML_DSA_RHO_PRIME_BYTES 64 /* private random seed size */
/*
* There is special case code related to encoding/decoding that tests the
* for the following values.
*/
/*
* The possible value for eta - If a new value is added, then all code
* that accesses ML_DSA_ETA_4 would need to be modified.
*/
# define ML_DSA_ETA_4 4
# define ML_DSA_ETA_2 2
/*
* The possible values of gamma1 - If a new value is added, then all code
* that accesses ML_DSA_GAMMA1_TWO_POWER_19 would need to be modified.
*/
# define ML_DSA_GAMMA1_TWO_POWER_19 (1 << 19)
# define ML_DSA_GAMMA1_TWO_POWER_17 (1 << 17)
/*
* The possible values for gamma2 - If a new value is added, then all code
* that accesses ML_DSA_GAMMA2_Q_MINUS1_DIV32 would need to be modified.
*/
# define ML_DSA_GAMMA2_Q_MINUS1_DIV32 ((ML_DSA_Q - 1) / 32)
# define ML_DSA_GAMMA2_Q_MINUS1_DIV88 ((ML_DSA_Q - 1) / 88)
typedef struct poly_st POLY;
typedef struct vector_st VECTOR;
typedef struct matrix_st MATRIX;
typedef struct ml_dsa_sig_st ML_DSA_SIG;
int ossl_ml_dsa_matrix_expand_A(EVP_MD_CTX *g_ctx, const EVP_MD *md,
const uint8_t *rho, MATRIX *out);
int ossl_ml_dsa_vector_expand_S(EVP_MD_CTX *h_ctx, const EVP_MD *md, int eta,
const uint8_t *seed, VECTOR *s1, VECTOR *s2);
void ossl_ml_dsa_matrix_mult_vector(const MATRIX *matrix_kl, const VECTOR *vl,
VECTOR *vk);
int ossl_ml_dsa_poly_expand_mask(POLY *out, const uint8_t *seed, size_t seed_len,
uint32_t gamma1,
EVP_MD_CTX *h_ctx, const EVP_MD *md);
int ossl_ml_dsa_poly_sample_in_ball(POLY *out_c, const uint8_t *seed, int seed_len,
EVP_MD_CTX *h_ctx, const EVP_MD *md,
uint32_t tau);
void ossl_ml_dsa_poly_ntt(POLY *s);
void ossl_ml_dsa_poly_ntt_inverse(POLY *s);
void ossl_ml_dsa_poly_ntt_mult(const POLY *lhs, const POLY *rhs, POLY *out);
void ossl_ml_dsa_key_compress_power2_round(uint32_t r, uint32_t *r1, uint32_t *r0);
uint32_t ossl_ml_dsa_key_compress_high_bits(uint32_t r, uint32_t gamma2);
void ossl_ml_dsa_key_compress_decompose(uint32_t r, uint32_t gamma2,
uint32_t *r1, int32_t *r0);
void ossl_ml_dsa_key_compress_decompose(uint32_t r, uint32_t gamma2,
uint32_t *r1, int32_t *r0);
int32_t ossl_ml_dsa_key_compress_low_bits(uint32_t r, uint32_t gamma2);
int32_t ossl_ml_dsa_key_compress_make_hint(uint32_t ct0, uint32_t cs2,
uint32_t gamma2, uint32_t w);
uint32_t ossl_ml_dsa_key_compress_use_hint(uint32_t hint, uint32_t r,
uint32_t gamma2);
int ossl_ml_dsa_pk_encode(ML_DSA_KEY *key);
int ossl_ml_dsa_sk_encode(ML_DSA_KEY *key);
int ossl_ml_dsa_sig_encode(const ML_DSA_SIG *sig, const ML_DSA_PARAMS *params,
uint8_t *out);
int ossl_ml_dsa_sig_decode(ML_DSA_SIG *sig, const uint8_t *in, size_t in_len,
const ML_DSA_PARAMS *params);
int ossl_ml_dsa_w1_encode(const VECTOR *w1, uint32_t gamma2,
uint8_t *out, size_t out_len);
int ossl_ml_dsa_poly_decode_expand_mask(POLY *out,
const uint8_t *in, size_t in_len,
uint32_t gamma1);
/*
* @brief Reduces x mod q in constant time
* i.e. return x < q ? x : x - q;
*
* @param x Where x is assumed to be in the range 0 <= x < 2*q
* @returns the difference in the range 0..q-1
*/
static ossl_inline ossl_unused uint32_t reduce_once(uint32_t x)
{
return constant_time_select_32(constant_time_lt_32(x, ML_DSA_Q), x, x - ML_DSA_Q);
}
/*
* @brief Calculate The positive value of (a-b) mod q in constant time.
*
* a - b mod q gives a value in the range -(q-1)..(q-1)
* By adding q we get a range of 1..(2q-1).
* Reducing this once then gives the range 0..q-1
*
* @param a The minuend assumed to be in the range 0..q-1
* @param b The subtracthend assumed to be in the range 0..q-1.
* @returns The value (q + a - b) mod q
*/
static ossl_inline ossl_unused uint32_t mod_sub(uint32_t a, uint32_t b)
{
return reduce_once(ML_DSA_Q + a - b);
}
/*
* @brief Returns the absolute value in constant time.
* i.e. return is_positive(x) ? x : -x;
*/
static ossl_inline ossl_unused uint32_t abs_signed(uint32_t x)
{
return constant_time_select_32(constant_time_lt_32(x, 0x80000000), x, 0u - x);
}
/*
* @brief Returns the absolute value modulo q in constant time
* i.e return x > (q - 1) / 2 ? q - x : x;
*/
static ossl_inline ossl_unused uint32_t abs_mod_prime(uint32_t x)
{
return constant_time_select_32(constant_time_lt_32(ML_DSA_Q_MINUS1_DIV2, x),
ML_DSA_Q - x, x);
}
/*
* @brief Returns the maximum of two values in constant time.
* i.e return x < y ? y : x;
*/
static ossl_inline ossl_unused uint32_t maximum(uint32_t x, uint32_t y)
{
return constant_time_select_int(constant_time_lt(x, y), y, x);
}
#endif /* OSSL_CRYPTO_ML_DSA_LOCAL_H */