/* * Copyright 1998-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/e_os.h" #include "crypto/cryptlib.h" #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_AMD64) || defined(_M_X64) extern unsigned int OPENSSL_ia32cap_P[OPENSSL_IA32CAP_P_MAX_INDEXES]; # if defined(OPENSSL_CPUID_OBJ) /* * Purpose of these minimalistic and character-type-agnostic subroutines * is to break dependency on MSVCRT (on Windows) and locale. This makes * OPENSSL_cpuid_setup safe to use as "constructor". "Character-type- * agnostic" means that they work with either wide or 8-bit characters, * exploiting the fact that first 127 characters can be simply casted * between the sets, while the rest would be simply rejected by ossl_is* * subroutines. */ # ifdef _WIN32 typedef WCHAR variant_char; # define OPENSSL_IA32CAP_P_MAX_CHAR_SIZE 256 static variant_char *ossl_getenv(const char *name) { /* * Since we pull only one environment variable, it's simpler to * just ignore |name| and use equivalent wide-char L-literal. * As well as to ignore excessively long values... */ static WCHAR value[OPENSSL_IA32CAP_P_MAX_CHAR_SIZE]; DWORD len = GetEnvironmentVariableW(L"OPENSSL_ia32cap", value, OPENSSL_IA32CAP_P_MAX_CHAR_SIZE); return (len > 0 && len < OPENSSL_IA32CAP_P_MAX_CHAR_SIZE) ? value : NULL; } # else typedef char variant_char; # define ossl_getenv getenv # endif # include "crypto/ctype.h" static int todigit(variant_char c) { if (ossl_isdigit(c)) return c - '0'; else if (ossl_isxdigit(c)) return ossl_tolower(c) - 'a' + 10; /* return largest base value to make caller terminate the loop */ return 16; } static uint64_t ossl_strtouint64(const variant_char *str) { uint64_t ret = 0; unsigned int digit, base = 10; if (*str == '0') { base = 8, str++; if (ossl_tolower(*str) == 'x') base = 16, str++; } while ((digit = todigit(*str++)) < base) ret = ret * base + digit; return ret; } static variant_char *ossl_strchr(const variant_char *str, char srch) { variant_char c; while ((c = *str)) { if (c == srch) return (variant_char *)str; str++; } return NULL; } # define OPENSSL_CPUID_SETUP typedef uint64_t IA32CAP; void OPENSSL_cpuid_setup(void) { static int trigger = 0; IA32CAP OPENSSL_ia32_cpuid(unsigned int *); IA32CAP vec; const variant_char *env; int index = 2; if (trigger) return; trigger = 1; if ((env = ossl_getenv("OPENSSL_ia32cap")) != NULL) { int off = (env[0] == '~') ? 1 : 0; vec = ossl_strtouint64(env + off); if (off) { IA32CAP mask = vec; vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P) & ~mask; if (mask & (1<<24)) { /* * User disables FXSR bit, mask even other capabilities * that operate exclusively on XMM, so we don't have to * double-check all the time. We mask PCLMULQDQ, AMD XOP, * AES-NI and AVX. Formally speaking we don't have to * do it in x86_64 case, but we can safely assume that * x86_64 users won't actually flip this flag. */ vec &= ~((IA32CAP)(1<<1|1<<11|1<<25|1<<28) << 32); } } else if (env[0] == ':') { vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P); } /* Processed indexes 0, 1 */ if ((env = ossl_strchr(env, ':')) != NULL) env++; for (; index < OPENSSL_IA32CAP_P_MAX_INDEXES; index += 2) { if ((env != NULL) && (env[0] != '\0')) { /* if env[0] == ':' current index is skipped */ if (env[0] != ':') { IA32CAP vecx; off = (env[0] == '~') ? 1 : 0; vecx = ossl_strtouint64(env + off); if (off) { OPENSSL_ia32cap_P[index] &= ~(unsigned int)vecx; OPENSSL_ia32cap_P[index + 1] &= ~(unsigned int)(vecx >> 32); } else { OPENSSL_ia32cap_P[index] = (unsigned int)vecx; OPENSSL_ia32cap_P[index + 1] = (unsigned int)(vecx >> 32); } } /* skip delimeter */ if ((env = ossl_strchr(env, ':')) != NULL) env++; } else { /* zeroize the next two indexes */ OPENSSL_ia32cap_P[index] = 0; OPENSSL_ia32cap_P[index + 1] = 0; } } /* If AVX10 is disabled, zero out its detailed cap bits */ if (!(OPENSSL_ia32cap_P[6] & (1 << 19))) OPENSSL_ia32cap_P[9] = 0; } else { vec = OPENSSL_ia32_cpuid(OPENSSL_ia32cap_P); } /* * |(1<<10) sets a reserved bit to signal that variable * was initialized already... This is to avoid interference * with cpuid snippets in ELF .init segment. */ OPENSSL_ia32cap_P[0] = (unsigned int)vec | (1 << 10); OPENSSL_ia32cap_P[1] = (unsigned int)(vec >> 32); } # else unsigned int OPENSSL_ia32cap_P[OPENSSL_IA32CAP_P_MAX_INDEXES]; # endif #endif #ifndef OPENSSL_CPUID_OBJ # ifndef OPENSSL_CPUID_SETUP void OPENSSL_cpuid_setup(void) { } # endif /* * The rest are functions that are defined in the same assembler files as * the CPUID functionality. */ /* * The volatile is used to ensure that the compiler generates code that reads * all values from the array and doesn't try to optimize this away. The standard * doesn't actually require this behavior if the original data pointed to is * not volatile, but compilers do this in practice anyway. * * There are also assembler versions of this function. */ # undef CRYPTO_memcmp int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { size_t i; const volatile unsigned char *a = in_a; const volatile unsigned char *b = in_b; unsigned char x = 0; for (i = 0; i < len; i++) x |= a[i] ^ b[i]; return x; } /* * For systems that don't provide an instruction counter register or equivalent. */ uint32_t OPENSSL_rdtsc(void) { return 0; } size_t OPENSSL_instrument_bus(unsigned int *out, size_t cnt) { return 0; } size_t OPENSSL_instrument_bus2(unsigned int *out, size_t cnt, size_t max) { return 0; } #endif