Add blinding in BN_GF2m_mod_inv for binary field inversions
Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Andy Polyakov <appro@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/6070)
This commit is contained in:
parent
a7b0b69c6e
commit
0dae8bafce
2 changed files with 46 additions and 90 deletions
4
CHANGES
4
CHANGES
|
@ -9,6 +9,10 @@
|
|||
|
||||
Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
|
||||
|
||||
*) Apply blinding to binary field modular inversion and remove patent
|
||||
pending (OPENSSL_SUN_GF2M_DIV) BN_GF2m_mod_div implementation.
|
||||
[Billy Bob Brumley]
|
||||
|
||||
*) Deprecate ec2_mult.c and unify scalar multiplication code paths for
|
||||
binary and prime elliptic curves.
|
||||
[Billy Bob Brumley]
|
||||
|
|
|
@ -547,7 +547,8 @@ int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||
* Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
|
||||
* Curve Cryptography Over Binary Fields".
|
||||
*/
|
||||
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
||||
static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
|
||||
const BIGNUM *p, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
|
||||
int ret = 0;
|
||||
|
@ -713,6 +714,46 @@ int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
|||
return ret;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
|
||||
* This is not constant time.
|
||||
* But it does eliminate first order deduction on the input.
|
||||
*/
|
||||
int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *b = NULL;
|
||||
int ret = 0;
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
if ((b = BN_CTX_get(ctx)) == NULL)
|
||||
goto err;
|
||||
|
||||
/* generate blinding value */
|
||||
do {
|
||||
if (!BN_priv_rand(b, BN_num_bits(p) - 1,
|
||||
BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY))
|
||||
goto err;
|
||||
} while (BN_is_zero(b));
|
||||
|
||||
/* r := a * b */
|
||||
if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
|
||||
goto err;
|
||||
|
||||
/* r := 1/(a * b) */
|
||||
if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
|
||||
goto err;
|
||||
|
||||
/* r := b/(a * b) = 1/a */
|
||||
if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
|
||||
goto err;
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Invert xx, reduce modulo p, and store the result in r. r could be xx.
|
||||
* This function calls down to the BN_GF2m_mod_inv implementation; this
|
||||
|
@ -740,7 +781,6 @@ int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
|
|||
return ret;
|
||||
}
|
||||
|
||||
# ifndef OPENSSL_SUN_GF2M_DIV
|
||||
/*
|
||||
* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
||||
* or y, x could equal y.
|
||||
|
@ -771,94 +811,6 @@ int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
|||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
# else
|
||||
/*
|
||||
* Divide y by x, reduce modulo p, and store the result in r. r could be x
|
||||
* or y, x could equal y. Uses algorithm Modular_Division_GF(2^m) from
|
||||
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to the
|
||||
* Great Divide".
|
||||
*/
|
||||
int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
|
||||
const BIGNUM *p, BN_CTX *ctx)
|
||||
{
|
||||
BIGNUM *a, *b, *u, *v;
|
||||
int ret = 0;
|
||||
|
||||
bn_check_top(y);
|
||||
bn_check_top(x);
|
||||
bn_check_top(p);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
|
||||
a = BN_CTX_get(ctx);
|
||||
b = BN_CTX_get(ctx);
|
||||
u = BN_CTX_get(ctx);
|
||||
v = BN_CTX_get(ctx);
|
||||
if (v == NULL)
|
||||
goto err;
|
||||
|
||||
/* reduce x and y mod p */
|
||||
if (!BN_GF2m_mod(u, y, p))
|
||||
goto err;
|
||||
if (!BN_GF2m_mod(a, x, p))
|
||||
goto err;
|
||||
if (!BN_copy(b, p))
|
||||
goto err;
|
||||
|
||||
while (!BN_is_odd(a)) {
|
||||
if (!BN_rshift1(a, a))
|
||||
goto err;
|
||||
if (BN_is_odd(u))
|
||||
if (!BN_GF2m_add(u, u, p))
|
||||
goto err;
|
||||
if (!BN_rshift1(u, u))
|
||||
goto err;
|
||||
}
|
||||
|
||||
do {
|
||||
if (BN_GF2m_cmp(b, a) > 0) {
|
||||
if (!BN_GF2m_add(b, b, a))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(v, v, u))
|
||||
goto err;
|
||||
do {
|
||||
if (!BN_rshift1(b, b))
|
||||
goto err;
|
||||
if (BN_is_odd(v))
|
||||
if (!BN_GF2m_add(v, v, p))
|
||||
goto err;
|
||||
if (!BN_rshift1(v, v))
|
||||
goto err;
|
||||
} while (!BN_is_odd(b));
|
||||
} else if (BN_abs_is_word(a, 1))
|
||||
break;
|
||||
else {
|
||||
if (!BN_GF2m_add(a, a, b))
|
||||
goto err;
|
||||
if (!BN_GF2m_add(u, u, v))
|
||||
goto err;
|
||||
do {
|
||||
if (!BN_rshift1(a, a))
|
||||
goto err;
|
||||
if (BN_is_odd(u))
|
||||
if (!BN_GF2m_add(u, u, p))
|
||||
goto err;
|
||||
if (!BN_rshift1(u, u))
|
||||
goto err;
|
||||
} while (!BN_is_odd(a));
|
||||
}
|
||||
} while (1);
|
||||
|
||||
if (!BN_copy(r, u))
|
||||
goto err;
|
||||
bn_check_top(r);
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
return ret;
|
||||
}
|
||||
# endif
|
||||
|
||||
/*
|
||||
* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue